AD-771 743

CONTROL OF CONCURRENT OPERATIONS
IN ASYNCHRONOUS DIGITAL PROCESSES

Fred U. Rosenberger

Washington University

Prepared for:
Advanced Research Projects Agency
Public Health Services

July 1970

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

CONTROL OF CONCURRENT OPERATIONS IN
ASYNCHRONOUS DIGITAL PROCESSES

Fred U. Rosenberger

TECHNICAL REPORT NO. i4

July, 1970 2

Computer Systems Laboratory Ll [.
Lid
Washington University (

St. Louis, Missouri

This research, under Ihe direction of Dr. Donald F. Wann, was originally presented to the
Electrical Engineering Department of Washington University as a doctoral dissertation. The work
was supported in part by the Advanced Research Projects Agency of the Department of Defense
under Contract SD-302 aud by the Division of Research Facilities and Resources of the National

Institute of Health under Grant FR-00396,

-1-

ABSTRACT

Methods are presented which can be used to analyze a sequential digital
process and synthesize a proeess which performs the same operations but in less
time by allowing concurrent exeeution of operations where possible. In the
model used, concurrent execution of operations is controlled by branch
operations whieh initiate coneurrent paths of exccution and by rendezvous
operations which combine concurrent paths of execution after completion. Two
types of errors which may oceur in coneurrent processes but not in seqquential
processes are distinguished. The first, called sequencing errors, cause the
computed results to depend on the magnitude of the delays in the process
operations and are due to operations being initiated before all of their data
values are available. The second type of errors are ealled implementation errors
and are caused by attempting to combine non-concurrent paths of execution
with a rendezvous operation and by attempting to initiate an operation that is
already being exeented. The problem of deteeting and correeting these errors is
climinated by insuring that the synthesized eoncurrent process is free of
sequencing and implementation errors, A precedenee relation is determined for
the operations of the process and is used to insure that no operation is exeeuted
until all operations whose execution must precede it are completed thercby
preventing sequeneing errors. Dominanee relations and direeted cut sets, which

specify the relationship between the exeeution of the operations. are used to

avoid implementation errors.

No.

9

TABLE OF CONTENTS

Page
Itroduetion -« - v v v e e ©000000000030000000000000000GS0G000000 |
Connectivity, Precedence, and Dominance Relations: -« o ovv oo e 7
20 Binary Relations -« c o oottt © 000000000000000a e 7
2.2 Operations on Binary Relations- -+« oo Ceeee R
2200 Transitive ClOSURC <« v v v e e e e e e e e e I
222 The Cover of i Relation « -« oo oo v e e 11
223 T()p();ggic;ll Ordcring ... 6000000000000 0 b
2.3 Connectivity and Reachability Reltions -« oo oo 12
24 Precedence ReBiionS - -« -« o oo oot e e 15
241 Precedence Relations Required by Decision Dependence o I
24.2 Precedence Relations Required by Data Dependence 0000000800000 17
2.4.3 Combination ot Precedence Relations ... o 18
244 Limitations in Determining the Precedence Relation.. 2
2.5 Dominance RCRUONS .« ..o 21
2.6 Control Graphs - oo 27
2.7 Sunm;”y ... 31
Loop-Free Process SyNthesis « -« - oo 33
3.1 ']ypc\ of Errors Considered -+ -« -+ oo oot 33
3.2 Decision Free Processes <« o v oot it e e 33
3.3 Processes (‘Ulllilillillg PGS IONS ¢ e o e 38
3.3.1 Direct Predecessors with Conditions Equal to Their SUCCessor -« vvvveene i, 38
3.3.2 Direet Predecessors that do not Dominuate TREIr SUCEESSOT « « « v v vvveorene oo, 40
3.3.3 Direct Predecessors that are not Snbordinate (o THeir SUCCOSSOr o oo vvevnneeenn ., 44
3.3.4 Conditional Direct Predecessors -« - vvv v 44
3.3.5 Proof that the Synthesized Network is Error-Free <o oo, 52
oy SUIMMBGY e oecoccaoaacoooonoansoooanaBos oo dBak oo oonannnseodesasoosmont oo, .. 34
Processes Contuining Loops oo 55
4.1 Concurrent Operations in Processes Containing Loops - ..o oo 57
4.2 Dominance Relations in Processes Contaming Loops oo 57

No.

S
6.

TABLE OF CONTENTS

(cont’d)
Page

4.3 Precedence Relations in Processes Containing Loops 60
44 Cut Sets in Processes Containing Loops ... 60
4.5 Synthesis of Processes with Type A Concurrency 70
450 Example .o 70

4.6 Synthesis of Processes with B Concurrency 75
4.7 Synthesis of Processes with Type C Concurrencv. o 81
4.7.1 Self-Dependent Signalscoooouiie i 90
4.7.2 Synthesis of Processes with Self-Dependent Signals - ..o 92
4.7.2.1 Reciprocal Precedence Relations -« -« ovovnenonunonen e 92

4.7.2.2 Reciprocal Basic Precedence Relations: - -« ool 94

4723 Example ... 95

A8 8Summary .. 101
Conclusion. ... 102
Bibliography 104

£55

No.
1.

Y

LIST OF TABLES

Compurison of Execution Times und Module Requirements . ..

Execution Time tor Macromodule Operations

No.

0.

-Vi-

LIST OF FIGURES

Page
Example of o Process 2
Lxample of a Concurrent Process that cannot be Specified by PO TOGETHER Swatements5
hicorreet Use of Rendezvous Operition i S
Representation of the Relation Less Than ..o o 9
A Process with No unique Feedback Are ..o o 13
A Grapl in which All Nodes cannot be Reaclied from the Initiation node After Deletion of the Feedback
AFE 00 0000000000000005000000H000000000000000agEo00000a0050880808000000600000a 0., 14
A Graph Containing o Strongly Conuected Subgraph with 2 Exit Nodes o 0. 14
A Connectivity Grapitooo oo 16
The Becision Dependent Precedence Relation for the Connectivity Graph of Figure 8. 16
Example of the Use of an Additional Register to Remove Precedence Requirements 19
Algorithm to Caleulate the Precedence Relation o 00
A Process with a Decision Outeome that cannot Occur 0
Example of a Sequential Process with the Same Operation Exeented for Each Outcome of the Decision . .23
Caleulation of X5+ x>+ X oo 24
A Connectivity Graph ..o s
Dominance Matrix for the Example of Figure 1S 05
A Connectivity Grapl and the Corresponding Control Graph 23
Directed Cut Sets for the Control Graph of Figure 17o ...
Algorithm for Calenlating the Directed Cut Setso o .30
An Example of the Determination of Cut Sets ...t 32
A Process with a Hazard ..o oo 34
A Process witlt an Incomplete Rendezvous 000 34
The Process of Figure 22 without the Incomplete Rendezvous 35
ArDecisionFree Brasess SNEERE | SR L L e m 30
Concurrent Flow Chant for the Example of Tigure 24 ..o o 0 .. o0 e W 30
Example of a Process with a Decision ... 30
Example of an Operation that is not Dominated by Its Predecessors 41
Formation of the Initiation Signal for Operation 1 of Figwe 27 ..o 0 42
Fhe Portion of the Control Graph Reaching i and the Cut Sets for the Exmmple of Figure 27 ..., ... 43
Cut Set Table for the Example of Figure 27 ..o oo o b3

-Vil-

LIST OF FIGURES

(cont’d)

No. Page
31. Example of the Use of the Wait Operation4S
32. Combination of the 3 Wait Operations of Figure 31 into a Single Wait Operation ... 40
33. A Process with a Conditional Direct Predecessor ... i 47
34. Concurrent Process for the Example of Figure 33 e 47
35. Precedence Graph for the Example of Figure 34 Including the Wait Operation 49
36. Error-Free Concurrent Process for the Example of Figure 33o oo oo 50
37. A Concurrent Frocess Where an Operation Depends on One But Not All Outputs of the Wait Operation . .53
38. A Connectivity Graph Containing 2 Feedbuck Ares ... it 080
39. The Connectivity Graph ol Figure 2 with the Feedback Arcs Repluced by Loop Initiation and

Terminution NOeS . .. oo e 56
40. A Comnectivity Craph and Its Dominance Relation ... o o i 58
41, A Process With o LOOP . . . oo e ol
42. The Process of Figure 41 with the Loop “Unwound™ i, ol
43. The Process of Figure 41 with the One Copy ol the Loop Repeated oo oo 62
44. A Process which Aliows Cycle to Cycle CONCUIIENCYottt i e 02
45. A Process in which the Execution of Operation 5 may Precede the Execution of Operation 4 03
46. A Process in which the Execuation ol Operation 5 may not Precede the Execution of Operation 4 63
47. A Connectivity Graph in which Operation 6 Can Reach Operation 3 Only Over a Path Containing 2

FeCdback ATCS v e 65
48. Two Examples of Processes Where Operation J Can Reach Operation 1 only Over a Path Containing Two

[PoerdlBmER ATES 6000800000 00000000 000880 0K 0A8 000 aa NS oo BB 6 00000500000 oo oldbsacopmaonaod 07
49, A Control GRIPh ..ottt 69
50. A Connecctivity Graph with Added Decision and Merge Operation 71
S1. Connectivity Graph, Precedence Graph, and Dominance Relation for the Example ol Figure 1........ .. 72
52. Concurrent Flow Chart for the Example of Figure | ... o o oo 74
53. The Example of Figure 52 without Loop Entrance Concurrencyo 70
54, Example of Figure 52 with All Operations Preceding Operation 8t 77
55. A Connectivity Graph with Two Loops 80
56. An Example of Type B CONCUITCNCY ..ttt ttt i et e 82
57. A Process with a Single LOOP ..ot 83

58.
59.
60.
6l.
62.
03.
04.
0S.
06.
67.
68.

69,

Viii-

LIST OF FIGURES

{cont’d)

Page
The Initiation Networks for the Example of Figure 57 8S
Complete Concurrent Flow Chart for the Example of Figure 57 86
The Process of Figure 59 with Operation S Depending on the Completion of the Wait Operation 87
A Concurrent Process with a Hazardo 00 o 88
The Process of Figure 61 with the Error Corrected 0 89
A Typical Operation and Its M-R Network 0 o 91
Formation of the Reciprocal Precedence Relationo o0 93
A Sequential Flow Chart with One Loop 96
Precedence Graphs for the Flow Chart of Figure 65 97
A Concurrent Flow Chart for the Example of Figure 65 98
Precedence Graph for the Example of Figure 65 with Dummy Operation X Added 99

An Example of the Use of a Pair of Wait Operations to Allow Additional Concurrency 100

CONTROL OF CONCURRENT OPERATIONS IN ASYNCHRONOUS
DIGITAL PROCESSES

1. INTRODUCTION

Despite the tremendous increases in digital system operating speeds over the past twenty years, many applications
require, or can profitably utilize, even faster systems. Many problems, such as numerical weather prediction, have
restrictions on the time by which results must be produced if tliose results are to be useful. A prediction of 95%
probabili*y of rain for yesterday has very little value. Also, if digital systems can be made faster, without a
correspo.iding increase in price, the cost per calculation or problem can be reduced assuming there is enough demand
to utilize the increased capability. Although increased operating speed can be achieved by developing faster hardware
elerents such as logic gates and memories, there 1s a limit to the component operating speeds with the state of
technology available at any given time. Tliere is also a limit to the speed with which arithmetric operations such as
addition and multiplication can be performed with a given set of logic elements.'* 2+ 3 This report will be concerned
with increasing the operating speed of processes by changes in the organizational structure, specifically, changes that
will allow operations to be executed concurrently. The goal of the research reported here was to develop methods
for analyzing a process in which all operations are executed sequentially and to then synthesize an error-free process
that executes the same operations as the original process, but in less time, by executing operations concurrently
when possible.

The ;;rocesses discussed will be represented by flow charts like the example in Figure 1, which represents a set of
operations to be executed either by a prosrammed computer or by a special purpose digital system. The flow charts
are composed of three types of operations: processing operations, denoted by rectangular boxes, that modify the
data in storage elements (e.g., add, gate, write) ; decision operations, denoted by diamond shaped boxes, that
monitor the data in storage elements and determine which following operations are to be performed (e.g., compare);
and control operations, denoted by circles, that, together with the directed lines connecting the operations,
determine the order in which operations are to be performed. The processing and decision operations are numbered
in the lower right corner for reference. Storage elements and data paths are not shown explicitly by the flow chart
but are implied by the operations. Each processing operation has an input terminal or connection called the
initigtion terminal and an output terminal or connection called the eompletion terminal. A signal applied to the
initiation terminal of a processing op:ration is called an initiation signal and causes that operation to be executed.
When the execution of the operation is completed it generates a signal at its completion terminal called the
completion signal. If the completion terminal of one operation is connected to the initiation terminal of a second

operation, the second operation will begin execution as soon as the execution of the first operation is completed.

to
;

AR(I2) 0

AL == AL +H

SHIFTR

A

' — t*l

=

FT

FIGURE 1.

EXAMPLE OF A PROCESS

The decision operations have a singie initiation terminal and two or more completion terminals, When a decision
operation is executed it generates a completion signal on one of its completion terminals, the particular terminal
depending on the decision outcome. The branch operation has one initiation terminal and two or more completion
terminals. When it is exccuted it generates a signal on cach of its outputs and this can he used to initiate concurrent
operations.

The merge operation has two or more initiation terminals and u single completion terminal. When it receives an
initiation signal on any one of its inputs it generates the completion signal. The rendezvous operation also has two or
more initiation terminals and 4 single completion terminal but it generates a completion signal only after it has
received an initiation signal on cach of its inputs. The merge is used to combine the completion signals from
operations where only one can be executed at a time while the rendezvous is used to combine the completion signals
from operations that are exccuted concurrently. The first operation in a process is always a process termination or
PT operation. Execution of o Pt operation begins the exccution of the corresponding process and thie execution of
the process continues until the PT operation for the process is initiated.

The processing and decision operations are not restricted to simple operations but may represent long calculations
or subroutine calls that are grouped together as one operation for convenience. A flow chart with no branch and
rendezvous operations is culled the flow chart of a sequential process or a sequential flow chart while a fow chart
with branch and rendezvous operations is a flow chart of a concurrent process or a concurrent flow chart. The
exccution time of cuch vperation is assumed to be variable and not known although average execution times may
often be estimated. We will assume that the execution times of the control operations are short compared to those
for the processing and decision operations and can therefore be ignored. Since cach operation produces a completion
signal that is used to initiate following operations, the control of the process described does not depend on the
exccution time of the operations, and the systems arc asynchronous.

As was mentioned previously the flow charts may represent a set of operations to be executed by a program in a
digital computer. tn that case the branch operation corresponds to the FORK instruction and the rendezvous
operation corresponds to WAIT or JOIN instructions that have been proposed by other authors 4+ 5+ 6 These
instructions allow more flexibility in controlling concurrent operations that the DO TOGETHER or PARALLEL
FOR”" 8, which specity groups of operations to he exccuted concurrently. Figure 2 shows an example proposed by
Fisher? of a concurrent process that cannot be specified by DO TOGETHER statements.

The flow charts can also represent a process to be executed by a special purpose digital system. Such a system can
be constructed conveniently from the set of macromodules that are currently being developed in the Computer
Systems Laboratory at Washington University'®+ 11, 12,13 0 examples of systems in the following discussion
will be given in terms of macromodule operations,

Systems with concurrent operations are subject to two types of errors that do not oceur in sequential systems.
The first type, called a sequencing error'*, occurs when some computed value depends on the relative timing
between concurrent operations. A simple example of this would be the case where concurrent operations added a
number to, and tested the sume register, There would be no way to predict whether the register contained the
original value, the sum, or something in between when the test was made. Snch an error can he detected but cannot

be corrected without determining whether the addition slouid be performed before or after the register test. The
second type of error, which is called an implementation crror'® | is caused by incorrect use of branch and rendezvous

operations. An example of this type of error is shown in Figure 3 where the rendezvous operation will receive only

Gl o R A EOE it Sl T

|

FIGURE 2. EXAMPLE OF A CONCURRENT PROCESS THAT
CANNOT BE SPECIFIED BY DO TOGETHER STATEMENTS

—

]

Ae—i Be— H+L}

FIGURE 3. INCORRECT USE OF RENDEZVOUS
OPERATION

one input signal In this example the PT operation will never be initiated. Several other types of implementation
errors are possible and these will be discussed later,

Severat authors ™S+ 10 1718 Jaye discussed the problem of assigning computers or processors (o the operations
of a process. Estrin and Torn, and Martin and Estrin have discussed the case of the restructurable computer where
the “cost™ ol executing a particular operation depends on which processor executes it ‘They desciibe iterative
methods by which trial assignments of each operation to a processor are made and the total computation cosl
determined. The assignments are then perturbed and the new cost compaed with (he preceding one to detenmine
whether an improvement las been made. Schwartz'? has discussed a heuristic method tor ASSIENIE Processors to
set of opesations. A ditferent model of a process is used by Kurp and Miller?® and by Reiter®! in which the
connections between operations represent queves of data. An operation may be executed whenever cach ol its
inputs contains a data vatue and upon completion of the operation a data value is placed on some of the oulptt
lines. Data vatues ure allowed to queue between the operations and Karp and Mitler, and Reiter have investigated
bounds on the length of these queues and the necessary conditions for a process to terminate.

Petection of errors in concurrent systems has been discussed in several papers'+ 22,23 A summary of methods
for detecting implementation errors is given by Keller and Wann??, These include topological analysis, simulation,
and the state transition method which is a systematic method of testing cach possible state of control signals in «

i . OO N .
* 25 s considered the problems of insuring that a concurtent process executed on a dhgital

process. Van lorn?
computer will always produce the same results if started from the sume initial state, and he discusses a number of
restrictions which 1aust be satistied. These restrictions do not eliminate errors that may oceur in the process but
insure that the resuits will be reproducible so that debugging will be facilitated.

In contrast to the preceding work on detecting errors or nsuring consistent performance of processes with
errors, the work reported here is concerned with synthesizing concurrent processes that are free of errors. The work
of Bernstein?® und Fisher? i determining precedence relations, which are used to specify the ordering ol operation
executions reguired to prevent sequencing errors, is reviewed and several other relations useful in the synthesis of
concurrent processes are developed in Chapter 2. These relations are used in the synthesis of error-free concurrent
processes for lToop-free sequential processes and for sequential processes containing foops, in Chapters 3 and 4
respectively. Chapter S summarizes the results, lists some deliciencies in the approach, and makes suggestions for

further work.

- @ WHE N AN e ess O pEe B RS I B O B e

2. CONNECTIVITY, PRECEDENCE, AND DOMINANCE RELATIONS

This section discusses the use of binacy relations, which may be represeited by ordered pairs, directed grapls, or
boolean matrices to describe several relations between the operations of a process, The connectivity refation
describes the order of execution of operations in u sequential process, the precedence relation describes the order of
execution that must be waintained to prevent sequencing errors, and the domimance relation describes the

refationship between the execution of operations.
2.1 BINARY RELATIONS

A binary relation on a set of elements, X = {xI S } »cun be specified by a set of ordered pairs of elements
of X. For example, the refation of *“less than’ on the set of integers from | to 4 cant be specified by thie following set

of pairs of numbers:

{(1.201.3)41,4)42,3)42,4)(3,4))

This set contains all pairs. (X%, ol elements of X such that X, is less than X;. For a set with n elements there are n?
possible ordered pairs of clements und cach may be included in the refation or not. Therefore, there ure 2("2)
possible binary relations on a set of n elements.

There are several important properties that binary relations may possess. The first of these is that the relation
may be transitive. That is, if (xi.xj) and (xj Xy)} are members ol the refation, (xi.xk) must be a member also. The
relation “less than™ in the previous example is a transitive refation. In this example the relation can be specified by
the ordered pairs (1, 2), (2, 3), and (3, 4) and the fact that the relation is transitive, since the other members of the
relation can be derived from this.

A second property of binary refutions is that they may be svinmetric. That is, if (xi,xj) belongs to the relation
then (x;x;) must belong to the relation also. A relation is antisymmetric it (xi.xj) being a member of the relation
implies thut(xi, x;)cannot be a member of the relation. A third property of binary relations is that they may be
reflexive or antireflexive. A relation is reflexive if for all X, (X, X.) is a member of the relation and antireflexive if for
all x;. (x,.x;} is not in the relation.

Tlie members of a relation ure ropologically ordered if they are numbered so that if (xi.xj) is u member of the
relation then i <j. A relation can only be topologically ordered if it is antisymmetric and antireflexive.

In addition to bemg represented by pairs of elements, a binary relation can also be represented by a directed
graph or by a square boolean matrix. In the directed graph representation, cach element of the set. X, is represented
by a node or vertex of a graph and cach member, (xi.xj), of the relation is represented by an are from node X, to
node X, I the boolean matrix representation, cach element of the set is represented by a row and cotumn of the
matrix and cach member of the refation, (xl.,x].) is specified by u *1”in thei, j position of the matrix, lf(xi,xj) isuota
member of the relation then the i, j position of the matrix is a 0", If the row and column numbers of a matrix
represent a topologicat order for u relation the matrix will be superdiagonat. The directed graph and boolean matrix

representations of the “less thau™ rekation for integers | to 4 are given in Figure 4.

Each of the three representations ol binary relations discussed has certain advantages. The directed graph is

casiest Tor humans to visuatize and Tollow but cannot be used directly for digital computer calcatat?ons: the boolean
matrix representation is convenient for computer caleulations using logicul operations: the ordered pair
representation can be manipulated using list processing operations 27+ 28+ 29 " the relation contains many
members, the boolean matrix representation will usually require less computer storage than the ordered pair
representation while il the relation has only a few members the converse is usually trae. In the remainder ol this
report, the examples witl be illnstrated by directed graphs and methods foz caleulating propertics of reknions will be
discussed in terms of boolean matrices.

The operations of a process will be represented by the nodes ol directed graphs and we will use “operation’ and
“node” interchangeably. The first node ol a graph will always represent the PHoperation and the Tast node will

always represent the PT operation for a process.

t9

.2 OPERATIONS ON BINARY RELATIONS

()

.2.1 Transitive Closure

The Tirst operation to be discussed is the determination ol the transitive closure of a transitive binary refation, By
transitive closure is meant all members ol the relation, mcluding those implied by the given members but not
specilied explicitly. A relation that is equal to its transitive closure will be called a complete relation and the
corresponding boolean matrix and directed graph will be called a complete matrix and complete graph, respectively.
The members implied by two or more given members can be Tound by taking powers of the boolean matrix, A.
which represents the relation as shown by Prosser?®. The expression for the 1, term of the square of the matrix is

given by the boolean expression:

N
(Az)ij = A Ay

k=1
Thus, the ij term of the squared matrix is equal to *17if and only if there is some k sneh that A = /\kj = . Then
every 1" in A? represents a member of the relation which is implied by two other members. Similarly, members of
the relation which are implied by a chim of n members will be represented by a 1" in the nth power of the matrix.
Every member of the relation must be implied by a chain of members of length Nt or less where N is the number
ol clements in the set, X. Therefore, the complete set of members of the relation, including all implied relations, can

be found by adding together (modulo 2) all of the powers of A from { to N 1. The computation required can be

reduced by noting that *9:
(A?+A)2 = AY4AMAZ and in general that

~n
(o (AT 2= D7 Al
——T T T T ————— |=2
n o times

Linclassified é ’;7
Sem:‘rit;é'l:essification I-) 7/ 7
DOCUMENT CONTROL DATA-R&D .

(Security clau:l!lcntlon of titie, body of absiract and indexing annotation must be entered when the overali report ia clasellied)
t. ORIGINATING AL TIVITY (Corporate author) 28, REPORT SECURITY CLASSIFICATION

Unclassified

Computer Systems Laboratory
Washington University

\is, Missouri

3. REPORT TITLE

2b. GROUP

Control of Concurrent Operations in Asynclironous Digital Processes

4. DESCRIPTIVE NOTES (Type of report and Inciueive dates)
Interim
8. AUTHORI(S) (First name, oiiddle iniliai, iaet name)

Fred U. Rosenberger

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
July, 1970 108 54
8a. CON TR‘C(;)OB(;B(‘X];];‘X-) Con"-act SD 302 98, ORIGINATOR'S REPORT NUMBE R(S)
s. prosec {WbNIH(DRFR) Grant No. RR-00396 Technical Report No. 14

(1) ARPA Project Code No. 655

od. OTHER REPORT NO(S) (Any othor numbers that may be aseigned

thie report)
d.
10. DISTRIBUTION STATEMENT
Distribution of this document is unlimited
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ARPA — Information Processing Techniques,
Washington, D.C., NIH., Div. of Research

13. ABSTRACT

Methods are presented which can be used to analyze a sequential digital process and synthesize a
process which performs the same operations but in less time by allowing concurrent execution of
operations where possible. In the model used, concurrent execution of operations is controlled by
branch operations which initiate concurrent paths of execution and by rendezvous operations which
combine concurrent paths of execution after completion. Two types of errors which may occur in
concurrent processes but not in sequential processes are distinguished. The first, called sequencing
errors, cause the computed results to depend on the magnitude of the delays in the process operations
and are due to operations being initiated before all of their data values are available. The second
type of errors are called implementation errors and are caused by attempting to combine non-concurrent
paths of execution with a rendezvous operation and by attempting to initiate an operation that is
already being executed. The problem of detecting and correcting these errors is eliminated by
insuring that the synthesized concurrent process is free of sequencing and implementation errors. A
precedence relation is determined for the operations of the process and is used to insure that no

operation is executed until all operations whose execution must precede it are «completed thereby

preventing sequencing errors. Dominance relations and directed cut sets, which specify the relationship

between the execution of the operations, are used to avoid implementation errors.

PORM NEPLACES DD FCxw 1478, 1 JAN 84, WHICH I8
1 OV o8 OSSOLETE FOR ARMY UK.

Reprod
NATIONAL TECHNICAL ~— Securlty Classification

INFOQRM/‘\TIO'\! SERVICE

erce

gfneld vaA 221

Unclassified

§ecurny Classification

t4. LINK A LINK B LINK C
KEY WORDS
ROLE wTY ROLE WT ROLE wWT
Parallel Processing
Concurrent Processing
Directed Graphs
Dominance Relation
Precedence Relation
Sece——

Security Classification

R

FIGURE 4.

9.

REPRESENTATION OF
LESS THAN

0

THE RELATION

0

0

Thus, only I log, (N 1) TTboolean multiplications are required to find alt imptied members of the refation where
[Ma “lindicates the smallest integer greater than or equal 10 a.

IJI

A more efficient method has been described by Warshatl®" and he gives a proof that his method is equivalent to

catculating the powers of A, The matrix is scanned one cotummn at a time and when a *F is found in position 1,j. row i

is replaced by the sum (modulo 2) of rew i and row j as shown below:

— forj=1,2...N

— for1=1,2,...N

— A, =1
1,

tork=1,2,...N

This algorithm operates only on rows of the matrix and can be conveniently implemented in a digital computer if
the mutrix is stored by rows.

If the A matrix is superdiagonal, the foltowing algorithm cuan be used:

[~ fori=N,N-1...1

—forj=N,N-1.. i+l

rA

2.2.2 The Cover Of A Relation

By the cover of a trunsitive relation is meant the minimum set of members of the relation that can be used to
specily it. This is formed by deleting all members of the relation that ure implied by two or more other members. A
relation that is equal to its cover will be called a basic relation and the corresponding boolean matrix und directed
graph will be called a basic marriv and basic graph, respectively. The members of the relation that are implied by
other members cuan be found by taking powers of A as described in Section 2.2.1 or by culculating the transitive
closnre of the sum of the second wnd third powers ol A. The second power of A contains all members of the rekition
that are implied by two members and the third power of A contains all members of the relation that are implied by
three members. The transitive closure of the sum of the second and third powers contains all members that ure
impiicd by e mbinations of two und three members or all members of the relation implied by two or more members.
Deleting all of these implied members from the original A matrix will leave the basic refation or the cover for the
rekation.

As with the caleulation of the transitive closure, a simpler method3? can be used if the matrix is superdiagonal,

The algorithm, as presented below, cun be applied only to a complete relation and wiil not work if all of the implied
relations are not included,

— fori=1,2...N |
’—' forj=itl,it2 .. N
it'Ai'j=‘l’

fork =i,it+l .. N

2.2.3 Topological Ordering

A topological order for the clements of a set under a binary relation may be determined from the transitive

closure or complete matrix representation of the relution as shown by Chen and Wing?3. Of course it any entry on

the main diagonal of the complete matrix is a ‘1’, (he relation is not antisymmetric and antireflexive so no

topological ordering is possible. The clements are runked according to the number of |’ in their row of the

complete matrix with the clement having the must “1's placed first, If two elements have the same number of ‘I’s in

their rows of the complete matrix they may be ranked in either order.

L i‘i‘m&"’*

2.3 CONNECTIVITY AND REACHABILITY RELATIONS

A connectivity relation is a binary relation that describes the order in which a set of operations that comprise
sequential process are to be performed. That is, if operation J can be performed directly following operation I then
(1.3) is a member of the relation and these is an are from node 1 to node J in the corresponding directed graph. The
connectivity relation is not a transitive relation since J directly following I, and K directly following J does not
imply that K directly follows 1. The directed graph and boolean matrix that represent the connectivity relation will
be catled the connectivity graph and connectivity matrix, respectively. If the order of execution of the operations in
the process is specified by a flow chart, the connectivity graph will be isomorphic to the flow chart and can be
determined directly from it.

The reachability relation is the transitive closure of the connectivity relation. If the 1) term of the reachability
matrix, R, is ‘1" then operation J may follow operation I but not necessarily directly. If J may follow I then |
reaches J. Ramamoorthy?* 35 has sliown several uses of the connectivity and reachability refations. One of these,
which will be of use in the following discussion, is a method to find the feedback arcs of a connectivity graph, or the
members of the relation which must be deleted to make the refation antisymmetric and antireflexive (loop-free).

The feedback ares of a connectivity graph are not necessarily unique as the examples in Figure 5 show. In Figure
5A the arc from node 6 to node 3 appears to be the feedback arc while in Figure 5B the feedback arc appears to be
the one from node 4 to node 5. Actually the graph in Figure 5B is isomorphic to the one in Figure SA and is
redrawn in Figure 5C to show the symmetry. Either the arc from node 6 to node 3 or the are from node 4 to node 5
can be considered the feedback arc for this graph. When either are is deleted the graph becomes loop-free.

The feedback ares of a connectivity graph are defined as the minimum set of arcs (not necessarily unigue) which
can be removed to climinate all loops of the sraph, and still allow all of the nodes to reach the termination nodeS.
The restriction requiring all nodes to be able to reach the termination node after deletion of the feedbuck ares is
included to prevent selection of the arc from node 2 to node 3 in Figure 6 as the feedback arc. Alternatively we
could require that all nodes be reachable from the initiation node after deletion of the feedback arcs, but the
requirement chosen is more convenient for alter work. Both requirements can be satisfied for most connectivity
graphs but not for the one shown in Figure 6. Either the arc from node 3 to node 4 or the are from node 4 to node 2
can be selected as the feedback arc and when this is deleted either node 4 camnot reach the termination node or the
initiation node cannot reach node 4.

A method for determining the feedback arcs is to ealculate the maximally strongly connected subgraphs (M.S.C.
subgraphs) as suggested by Ramamoorthy3®, The M.S,.C subgraphs are the maximum sets of nodes such that cach
node in the set can reach any other node in the set. If a grapli has no M.S.C. subgraphs it has no feedback arcs. The
M.S.C. subgraphs are clearly disjoint since by definition if two M.S.C. subgraphs have a node in common they must
have all nodes in either M.S.C. subgraph in common. The M.S.C. subgraphs are found from M, which is formed by
‘and’ing the reuchability matiix and its transpose together. The 1.3 element of M is a 1" if and only it I can reach and
be reached by J. The M.S.C. subgraphs of the system correspond to the distinet rows of M and are comprised of the
nodes repres:nted by the row positions containing a I, A node J, is an entrance node of an M.S.C. subgraph if it is a
member of the subgraph and there is any node, I, which is not a2 member of the subgraph such that C(1,J) = *1” where

Cis the connectivity matrix. Similarly, a node, J, is an exit node if there is any node, K, whiclt is not 4 member of

.13-

-G O—-0-0-C
Q—-E—=D—0——C

"
=

FIGURE 5. APROCESS WITH NO UNIQUE FEEDBACK ARC

FIGURE 0. A GRAPIL IN WIHCIT ALL NODES CANNOT BE REACHED FROM THEE
INITIATION NODE AIFFTER DELETION OF THI' FEEDBACK ARC

FIGURE 7. A GRAPH CONTAINING A STRONGLY CONNECTED SUBGRAPII
WITH 2 EXIT NODLS

the subgraph such that C(J.K) = *t*. Ramamoorthy identifies the feedback arcs as the arcs from nodes within each
M.S.C. subgraph to the entrance node of the M.S.C. subgraph, but since we require cacli operation to be able to
reich the tormination nede afterthéTecdbalk wivsae JEEY, o L wentilly the TeedUadk aies as (e aies fioa
exit nodes of a M.S.C. subgraph to a node within the M.S.C. subgraph. After the feedback arcs are determined, they
W debomall S s dle g @ wd e ML smipepde: o e remutming grapt oloUTRRcE 4 tet Fou w@8dional
feedback arcs. 1t there is more than one exit node from a M.S.C. subgraph then the arcs from afl of the exit nodes
may not be feedback arcs as illustrated in Figure 7. The M.S.C. subgraph is composed of nodes 2, 3, and 4 and both
nodes 3 and 4 are exit nodes. To obtain the fewest number of feedback arcs, the exit nodes can be selected one at a
time, their output arcs deleted, and the feedback ares in the remaining graph determined. The minimum set of arcs
found is selected as the set of feedback arcs. In the example of Figure 7, selecting node 3 first and then rode 4 gives
two feedback arcs while selecting node 4 first gives only one feedback are. Therefore, the arc from node 4 to node 2

is the feedback arc.
2.4 PRECEDENCE RELATIONS

A precedence relation on a set of operations specifies whicti operations must precede other operations to insure
correct performance of the process. A precedence relation is transitive, antireflexive, and antisymmetric. The
directed graph and boolean matrix that represent the basic set of members of the precedence relation will be called
the basic precedence graph and basic precedence matri, respectively, while the directed graph and boolean matrix
representing the complete set of members of the precedence relation will be calted the complete precedence graph
and complete precedence matrix, respectively. Operations which must be completed before a given operation will be
called the predecessors of the operation. The predecessors of operation I are all operations, J, with a *{” in the Jth
row of the Ith colummn of the complete precedence matrix. The direet predecessors of 1 are the predecessors of 1 that
are not predecessors of any other predecessor of 1. These correspond to members of the busic precedence relation
and are all operations with a *t* in their row of the Ith column of the basic precedence matrix. The indirect
predecessors are the predecessors of 1 which are not direct predecessors of 1. Most of the following work will be
concerned with the basic precedence relation since if all of its members are satisfied all of the members of the

complete precedence relation are satisfied also.
2.4.1 Precedence Relations Required by Decision Dependence

An operation may not be executed unless it would also be executed in the sequential process. We do not consider
the possibility of executing operations before it can be determined that they are to be executed. Thus, each
Uwerutling oy e executed only sher the complition of aft decisions that in prevenn e eXxecunon oi that
operation?

Ifa decision, I, can prevent the execution of an operation, 1, there must be some outcome of decision | for which
operation J ma® be executed and some outcome of Ussisin Bl ddios spuydet ¥ oo Ve Accemd A
particular outcome of decision { is represented by an are of the connectivity graph from node 1 to some other node

K. These operations may be found from the reachability matrix. The mnion of the sets of operations that may be

A CONNECTIVITY GRAPH
FIGURE 8

L

©

7 0

THE DECISION DEPENDENT PRECEDENCE
RELATION FOR THE CONNECTIVITY GRAPH
OF FIGURE 8

FIGURE 9.

executed for cach decision outcome minus their intersection gives the set of operations that can be executed for
only some of the decision outcomes, or all operations that the decision can prevent from being executed. Thus, the
aperativns that' must Beoerecured after each dectston ean be determined by manipulations on the readhiubility
matrix. Figures 8 and 9 show a connectivity graph and the members of the precedence relation due to decision
dependioiecs 1w il o 4. 1 Wiowadilans § " wlitl ¥ icw > edeted Ty wue kg Fim daicision 7 il sl i

5,6, and 7 can be reached by the other output from decision operation 2. The union of these two sets minus their
intersection gives operations 3 und 4 which must follow operation 2. Similarly the sets of operations reached by the
two outcomes of decision operation 4 are {5, ()) and {(») and their union minus their intersection is just {5)

Therefore, operation S must follow operation 4 us shown in the decision dependent precedence relation in Figure 9.
2.4.2 Precedence Relations Required by Data Dependence

The second class of precedence relations to be examined is due to storage elements whose values are changed by

the operations?: 2°

- In the Tollowing discussion, register will be used as a general term to refer to any storage
clement whether it is a register, core memory, or other type. Read will be used to indicate any use of the contents of
a register and write will refer to any change of the contents of a register. The types ol operations considered are
decision operations which can affect the flow of control based on the contents of registers, and processing
operations which chunge the contents of a register bused on the contents of other registers. It is assumed that the
actual registers used can be determined by analysis of the operations of the process, which eliminates or restricts the
possibility of using indirect addressing. This is a serious limitation but one which apparently cannot be avoided. The
original order between two operations must be maintained if their order of execution determines what value is left in
some register when they are completed, or if their order of execution can affect the valie in g register read by one of
the operations. Consider two operations, I and J, with | preceding J. Clearly, if they both write tie same register
then their order of execution cannot be interchanged since this would leave the value written by operation [in the
register instead of that written by operation J. Therefore, if two operations write the same register, their order may
not be interchanged.

If a register written by operation [is read by operation J, thew the operations camnot be interchanged since, if
they were interchanged the value read by operation J would not be the one written by operation I as in the original
order of execution. Similarly, if operation J writes u register that is read by register I, the operations cannot be
interchanged. Let R(X) represent the set of registers read by operation X, W(X) represent the set of registers writien
by operation X, und ¢ be ihe null set. Then if the following three conditions are satistied, operations I and J can be

exccuted in cither order or concurrently.

1. W) N W(J) = ¢
2. WI)NRJ)=¢
3. R(IDAW(I) = ¢

Conversely, if any of the three relations is not true, the original order of the operations mnst be maintained.
The preceding discussion assumes there @ no operations between [and J. If there are other operations between

them, J may be required to follow I due to implied members of the precedence relation. It is interesting 10 note that

it the original ordering was operation [followed by operation J, then only the second relation above actually forees
the operations to be sequential (¢.g., the case where operation J requires results computed by operation I). In the
first and “thind relations the ordérmg i constrammed Y cause Btk aperations tdse the shmé répister. W a dif¥erent
register were provided for operation J to write into, then the operations could be executed concurrently. This
Pl 11119 will P b, g S il i i sl e mitor Bl Bedlll]l el commspmL D e
modification ol the operations specitied originally.

A sequence of operations that is called as a subroutine can be considered as u single operation that is substituted
for the cull. The registers read and written would be the union ol all those read and written by the operations of the
sequence. Then the operation that was substituted Tor the call can be compared with the other operations 1o
determine the required members of the precedence relation. In some cases it may be possible for iwo sequences 10
Lo ddne T cthicn aoddd Lt et concaneaily. These wee aatfed conmuaive sequeaces by Bernsien ™. Tius oceurs
when there is a register that both sequences write before reading and whose contents are not required by other

s mmlhide o b sewmen oo | w oo bl cerpraroes e e S 5 4 LSRR KBTS A TR COTTROTTL uf
not required by other operations outside of the sequences. Detection of this situation requires recording not only
which registers are read and written but also the order in which they are read and written and determining whether
the registers are read by any Tollowing operations®®. Figure 10A shiows an example of possible concurrent operation
that will not be detected by the method deseribed above. In this example the sequences 2 to 4 and 5 to 7 ean be
executed in cither order but not concurrently. However, if sequence 5 to 7 is executed Tirst, then operation 8 cun be
exceuted concurrently with sequence 2 to 4, while executing sequence 2 to 4 first allows no concurrent operation. If
a new register, D, is substituted Tor register A in operations 5 10 7 then the two sequences can be executed
concurrently as shown in Figure 10B. In gencral, sequences that can be executed in either order but not

concurrently, because of common use of a register for temporary storage. can be executed concurrently if additional

registers are provided.
2.4.3 Combination of Precedence Relations

Combining the precedence relation due to decision dependence with that due to data dependence gives the
precedence relation for the operations of a prozess. In addition we require every operation to follow the process
initiation operation and to precede the process termination operation. In general the combination of these
precedence relations will not be the basic or the complete precedence relation but the techniques discussed in
Section 2.2 cun be used to find the basic and complete precedence relations.

Another method, which caleulates the basic precedence relation and complete precedence relation directly, is an

903637 whiich is shown in Figure 11. Initially T is the matrix of

algorithm due to Bingham, Fisher, and Semon
procediencs relations duc to the decision operations and S s the union of e conncctivity naaix and T The
algorithm converts these respectively into the complete and basic precedence matrices. The minimum number of
o ML el i bl-l i gt Al whil e e |y m 2 T | oy oAtted & fearoe, 1 o

three operations, where 2 must follow 1 and 3 must follow 2, there is no need to compare the registers read and

written by 1 and 3 since there is already an implied precedence relation between them.,

P I
y
4
A+—A+] 3
y
B+—A 4
y
y
- At
Ay
i
y
HALVE €
V
T

FIGURE 10A
A PROCESS WITII COMMUTATIVE
SEQUENCES

FIGURE 10. EXAMPLI:

TO REMOVI:

-19.

FIGURE 10B
THE PROCESS OF FIGURIEE 10A
WITH AN ADDITIONAL REGISTER

OF THIE USIE OF AN ADDITIONAL REGISTER
PRECEDENCE REQUIREMENTS

Step | for K = 2, 3..N
Step 2 for 1 = K I,K 2.1
T
Step 3 if TI.K = 0 then
B
Step 4 if S =1 then
Step 5 it (WHNRKNDU (RMHNWEK)DU (WHNWK)) # ¢
[Fi
Stcp 6 TI,K« |
Step 7 go to step 15
Step 8 otherwise ((W(1) N R(K)) U(R(1) n W(K)) u (W(HNWK) = ¢)
B
Step 9 S5k 0
Step 10 for 3 = 12,1 1
St 11 SIKTS)KU G AT)
Step 12 ~ for J =K +1,K + 2N
Step 14 otherwise (T K=1D
r .
Step 15 for J = 1.2, . .01
[

FIGURE 11. ALGORITHM TO CALCULATE THE PRECEDENCE RELATION

2.4.4 Limitations in Determining the Precedence Relation

There are several types of possible concurrent operation which are not recognized by the methods described
above. A degencrate case can occur when a particular outcome of a decision can never be taken. An example is
shown in Figure 12 where the “YES™ outcome lrom decision 4 can uever be taken, Since only the *NO™ outcome
from decision 4 can be taken, decision 4 and operation 5 could ke deleted from the process, allowing operations 3
and 6 to be executed concurrently. b some cases it might be possible to deteet decision outcomes that cannot oceur
but their oceurrence is probably rare, and Bernstein®© Tias shown that it is impossible to detect all such cases.

Another situation with possible concurrent operations which will not be recognized by the methods deseribed is
shown in Figure 13, where operations 3 and 4 are identical. b this case the shift operation is executed for either
output of the decision but the techniques used for analysis will make it follow the decision, The concurrent
exeeution of the shift and decision operations would be recognized if the shift operation was placed betore the
decision and the repetition of the operation would be eliminated. To detect this possibility would require comparing
the operations executed for each ontcome of a decision to determine whether the same operation is executed lor
cach decision outcome*®,

A more serious limitation, which was mentioned carlier, is that some operations cannot be executed concurrently
because they 1equire use of the same register or storage clement although there is nothing inherent in the data or
operations to require them to be executed sequentially, These situations e be recognized but require chauges in
the operations specified and may require additional processing operations and registers to allow concurrent
execution of operations. Another possibility would be to remove the member of the precedence relation between
them but 1o interlock their actual exceution' ' so that only one of them could be executed at a time. This would
allow the first one whose predecessors were completed to be executed first but would prevent them from being
exeeuted concurrently, Another situation where operations may be exceuted in either order but not concurrently
oceurs when several operations test and alter common status information as described by Dijkstra®®. Again, if this
sharing of data can be recognized. the operations may be interlocked so that they may be exeented in any order but
only one can be exceuted at a time,

Finally, the operations of a process may be required to be executed sequentially when there is an atternate set of
operations that will alfow some concurrent exceution. The valie of the polynomial X¥ + X4 + X can be caleulated
by either of the methods shown in Figure 14, where the value computed by cach operation of the flow cliart is
shown to the left of the operation. Each method requires four multiplications and two additions but several steps
can be performed concurrently using the second method, This probably represents the most serious problem
allowing concurrent execution of operations although some work has been done on constructing algogithms for

particular problems which allow concurrent execution of operations®¢-40,
2.5 DOMINANCE RELATIONS

The dominance relation provides information ou the refationship between the execution ol the operations in a
process. For example, if it is known that operation S iu the example shown in Figure 15 is executed for a particulay

fnitiation of the process. operations 1, 2, and 7 must be exeented also, operation 6 cannot be executed, and cither

wr

D—C
[}

Y
Pr

FIGURE 12. A PROCESS WITH A DECISION OUTCOME THAT CANNOT OCCUR

1
1J
‘v

"

-

SHFTL W SUET Wy

[]
COME A g

FIGURE 13. EXAMPLE OF A SEQUENTIAL PROCESS WITH

THE SAME OPERATION EXECUTED FOR EACH OUTCOME OF TIE DECISION

T PL
X ,
Ae—X . X =l 2
/
9
x._ o)
. X< C=(CX
A=AX 3 3
. y
X-+1 y
AsAHL X= A0 4
A
3
X +X
A—AX & B=—C
S
x*x? ’ '
+x2
A A'X x4 BB
0O b
x*tex2+1 [:
y
X5+X3+X 2
A=—A'X 8 ol AT
' |
PT_ o & XX | ATAXg
PRECEDENCE
FLOW CHART RELATION ’
X5+X3+X A‘—A*'B I(
METHOD | | PRECEDENCE
PT n RELATION
FIGURE 14. CALCULATION OF pUBIIeD

FLOW CHART
X3+x3+x

A CONNECTIVITY GRAPH
FIGURE 15

tJ

6

DOMINANCE MATRIX

c < <
S o o O
o)

6

S © o o

FOR THE EXAMPLE OF FIGURE 15

FIGURE

16.

-20-

aperation 3 or operatian bt be exeented, i ths case we say that vperations 1, 2, and 7 dominate operation S
i Al operalton S s subordinate to operations 1,2, and 7. Operations § and 6 are called exclusive. This
mlormation can be represented by bisary aelation, calted the dominance relation?®, and by the reachubility
mattn. Two operations, Tamd J, cannot both be executed on the sume initiation of the process unless cither the 1,J
or the It term of the reacability matnix is *1 16 weitler termis *1° then 1 cannot be executed alter J und J cannot
be exeented alter 1 and, therefore, they camot both be executed for u single initiation of the process. Thus, the
reachability matrix specifies whether the execution of two operations is exclusive or not.

To determnte, tor each operation 1, which other operations must be exceuted when s exccuted the dominance
relation is constructed. The boolean matrix used to represent the dominance relation is catled the dominance matrix,
D, and has o 1 in the 1J position if and only if 1 dominates J or the Tact that operation Lis executed impties that
operation 1 must be executed. Thus, the five possibilities Tor the execution of two operations, 1 and J, can be

determined as tollows where R is the reachability matrix.

D(1,1) DUJ. 1

ah 0 whenever either operation is executed both
ol them are executed.

P 0’ whenever J is executed 1 must be exccuted
but when 1 is executed J may or may not be
executed.

‘0’ ‘r whenever 1 is executed J must be executed
but when J is executed 1 may or may not be
executed.

0 ‘0 If R(1,J) = RU,1) =0 then the execution of

one implies that the other is not executed.
If R(L1) or R(J,D is ‘17 then the execution

of one gives no information about the other.

The dominance matrix, D, for a graph with N elements is determined as folows:

1. Set D to ull ‘0

2. Set 1 to0.

3. Set 1to 1+ 1 and Tind the reachability mutrix
ol the connectivity matrix with row and cotumn

1 set to ‘0.

4. 0f cither R(I.H) or ROIN) is 0" set DKL) 1o
1Tr=1,2...N
5. If | # N go to step 3.

Steps | and 2 initialize the D matrix and a counter. In step 3 the reachability matrix, with the 1th operation deleted,
is found. If any operation J, cannot be reached from the initiation operation then operation I must be exeeuted
every time that operation 1 is executed since every path from the initiation operation to operation J passes through
operation 1. Similarly, if any operation, J, cannot reach the termination operation then operation Imust be exeeuted
every lime operation |is. Step 4 sets the appropriate entry of D to a 1" when an operation cannot be reacicd from
the initiation operation or cannot reach the termination operation. Step S tests for completion and returns (o step 3
if steps 3 and 4 have not been carried out for all values ol L Figure 16 shows the dominance matrix for the example

of Figure 15.
2.6 CONTROL GRAPHS

In some cases, where only the nodes on the paths through the connectivity graph are of interest, and not the
order of the nodes, 1 more compact representation called the control graph will be used, which represents all paths
of the connectivity graph in 4 more compact form. The control graph is formed from the connectivity graph by
combining two nodes it an are between them is the only extant are Trom one of thc nodes and the only incident e
to the other node. Also if an arc is extant from a node with more than one extant are and incident to @ node with
more than one incident are it is split into two ares and a new node inserted between them. Vigure 17 shows an
example of a connectivity graph and the corresponding control graph Each node in the connectivity graph can be
assigned to a node in the control graph, however, node d of the control graph does not correspond to any node of
the connectivity grapli, Node d of the control graph represents a path which cannot be specified by any single node
in the connectivity graph. If the ratio of decision und merge operations is low the control graph will be much smaller
than the connectivity graph. The dominance relation for the operations or a system can be determined from the
control graph, usually with less effort t ian using the connectivity graph. since the control graph will usually have
fewer nodes.

In Chapters 3 and 4 we will need to find the directed cut sets of the control grapl or of portions of the control
graph. The directed cut sets of a graph are defined as all sets of nodes sucn that no member of a set can reach any
other member of that set and such that removal of all nodes of a set will leave no path from the initiation node to
(he termination node. Figure 18 shows the ditected cut sets for the example of Figure 17. The nodes in each
directed cut set represent a set of exclusive possible paths for the control each time the process is initiated. The
operations corresponding to exactly one of the nodes in each directed cut set will he executed when the process is
executed. The algorithm shown in Figure 19 gives a method of determining the directed cut sets of an N node graph
from its control matrix. V is an array of boolean vectors, each vector having a position for each node of the control
graph. R(1) is an N element hoolean vector with a “F in position 1if node I can reach or be reached by node 1.
“NODE" is an array ol integers used to record node numbers.

The algorithm operates by systematically selecting one node ol the graph and deleting all nodes that can reach or

he reached by that node. This process is repeated until there are no nodes reniniag, in which case all of the nodes

CONNECTIVITY GRAPH CONTROL GRAPH

FIGURE 17.

A CONNECTIVITY GRAPH AND THE CORRESPONDING
CONTROL GRAPH

.29,

£

FIGURE 18.

DIRECTED CUT SETS FOR TIIE

CONTROL GRAPII OF FIGURE 17

{h.l].l.',:l

{1g)

Pl |

\
viOy="1....1I
| - [+1 3

Y
NODE(1) = 1st
node in V(I-1) 4

b}

1

W

[W L ERER] 1

5

by 1

Cut Set Equals
Equals NODE/1
To NODE() 7

b

M

NODI(1) = Ist node

directly reachable from |1

NODBE(l) and in V(I-1)

Ml

ALGORITHM

SODE] i
it

FIGURE 19.
FOR CALCULATING THE DIRECTED CUT SETS

W YN D U B Y AN BN SRR O weer e O Sane O wewss el st e 0 GRS G

OOl T

31-

that have been selected to that point form a directed cut set. Step 2 initializes V(0) to all *1’s and the V array 1s used
to 1ecord which nodes have been deleted. | records the number of nodes that have been deleted. In step 4 the first
node that was not deleted at the preceding level is found and in step 5 the nodes reaching and 1eachable from this
node are deleted. Step 6 tests to determine if all nodes have heen deleted and il they have not, control returns to
step 3 1o ind and delete another node. If the test at step 6 finds that all nodes have keen deleted, step 7 records the
selected nodes as a cut set. Step 8 finds a node in the last set of nodes deleted that can be used instead of the
selected node, and that directly follows it. If one exists, control returns to step 5 to delete the nodes reaching and
reached by it. 1f no such node exists then all cut sets that include NODE (1 1) liave been found. It Fis not *17 then |
is decremented and the algorithm goes to step R to test for a new node at the preceding level 10 1is *1”" then all cut
sets have been found. Figure 20 illustrates graphically the process by which thie nodes ar - " cted and the cut sets

determined.
2.7 SUMMARY

Several hinary relations and methods for caleulating them have been discussed in this chapter. The precedence
relation specifies any required execution sequence, the dominance relation specifies which operations must be
executed if a given operation is executed, and the control graph is used to determine sets of operations which form
directed cut sets for a process. These relations will he used in the following chapters to aid in the synthesis of

concurrent processes.

ll i
NODIE() a, V(1) 0000000

L B |
Virr mmpr

I3
L IR TN TETE
L FITRT]

Sy |.| bt

([} e

11
LRI 1T

KK imita0ai

1A
SN =

12
NODE) ¢
V(1) 0000000

I
BIMN & V() 0000000

FIGURE 20.
AN EXAMPLE OF TIHE
DETERMINATION OF CUT SETS

3. LOOP-FREE PROCESS SYNTHESIS

Once the retations discussed in Chapter 2 have been determined, the uext step is to use this information to
synthesize an error-free control network in which each operation is initiated as soon as all of its predecessors ware
completed. The types of errors considered are diseussed in Section 3.1 and Sections 3.2 and 3.3 consider the

synthesis of error-free processes. Chapter 4 extends this work to include processes whicli contain loops.
3.1 TYPES OF ERRORS CONSIDERED

The two main categories ol errors considered are sequencing errors which may be prevented by satisfying the
precedence relation, und implementation errors. Implementation errors are caused by incorrect use of branch and
rendesvous operations. The types of implementation crrors considered are fazards, where an operation may be
initiated before it has generated the completion signal from a preceding initiation, und incomplete rendezvous, where
at least one but not all inputs to a rendezvous receive initiation signals. The hazard and re-entered branch errors
described by Keller?? have been combined into the single category of hazard since the re-entered branch error is a
special case of a hazard. Figures 21 and 22 show examples of processes with errors. The process shown in Figure 22
will aperate correctly the first time it is initiated but one of the rendezvous operations will receive an initiation
signal on onty one input and will be waiting for an initiation signal on the other input. If the other decision outcome
is tuken when the network is initiated the second time, the rendezvous will have received a previous initiation signat
on the input reached by operation 2 and will produce its completion signal when it receives the initiation signal from
the decision. This would allow the operation (ollowing the rendezvous to be initiated before one of its predecessors.
To insure error-ree performance of the process in this example, the output rom operation 2 must be rendezvoused
with the outputs from decision operation 3 before operation 4 or § is initiated. However. the outputs from decision
operition 3 must be merged together belore they can be rendezvoused with the termination signal Trom operation 2.
Figure 23 shows a process with no errors that uchieves the desired operations in which a new register, G, has heen
employed. The added operations to set and test G are required so that the outputs Irom decision 3 can be merged
together and then spht, after rendezvousing with the output from operation 2.

To simplify the process shown in Figure 23, a new operation, called the wait operation, will be introduced. 1t has
one input defined as the signal input and two or more inputs defined us decision inputs, with an output
corresponding to each of the decisien inputs. Whenever an initiation signal is applied to the si=nal input and one of
the decision inputs, a completion signal is generated on the corresponding output. A wait operation functions as 1
group of two-input rendezvous operations which share one input signal and which are all cleared whenever an output
signal is generated by any one of them. Thus, a wait operation can be used to replace all of the operations shown

enclosed in the dotted box in Figure 23.
3.2 DECISION FREE PROCESSES

Before discussing the general technique Tor determining a control network, consider the example in Figure 24.

There are cight processing operat;ons with an assumed precedence relation as shown and no decision operations,

M)

B4]

B=A

FIGURE 21.
A PROCESS WITH A HAZARD

T .

FIGURE 22.

A PROCESS WITH AN INCOMPLETE
RENDEZVOUS

-35-

e

FIGURE 23.

THE PROCLSS OF FIGURY 22 WITHOUT THE INCOMPIETE RENDEZVOUS

236

\
0 P

rJ

ta

CONNECTIVITY PRECEDENCE

GRAPH GRAPH

FIGURE 24. A DECISION-FREE PROCESS

PT ¢

FIGURE 25. CONCURRENT FLOW
CITART FOR THE EXAMPLE OF FIGURE 24

=

d

37.

Each operation cun be initiated when all of its direct predecessors are completed and the fowehart for an equivalent

concurrent process 1s shown in Figure 25, The following theorem deseribes a method which can be used to

synthesize the concurrent process and a proof that the synthesized process will be error free,

Theorem |

Proof’

The following three steps spearfy the synthesis of an error-free process, in which every
operation is initiated as soon as all of its predecessors are completed, given the precedence

relation of a decision-free sequential process.

a. Connect g branch operation to the output of each operation, I, with one branch
operation output for every operation of which operation J is u direct
predecessor. H D is the direct predecessor of only one operation then no branch
operation is required tor J,

b. Connect a rendesvous operation to the input of each operation. 1, with an inpurt
for cach operation which is a direct predecessor of L 1F | has only one direct
predecessor then no rendezvons operation is required for J.

¢ For each operation, I, connect one output of the branch operation associated
with cach predecessor of 1 or the predecessor output it it has no associated
branch operation, to an input of the rendezvous for ¥ or to Ps input if | has no

associated rendezvous operation,

Let the operations of the process be numbered sequentially in the order ot their
exeeution in the sequential process. with the Pl operation numibered 1. Then all
predecessors of operation K must be assigned numbers that are less than K since
operation K cannot be required to follow an operation that it does not follow in the
sequential process. For any operation, K, assimme that sometime after the initiation of the
Pl operation each direet predecessor of K generates exactly one completion signal. Then
cach input to the rendezvous operation preceding operation K will receive exactly one
initiation signal and therefore, the rendezvous will generate one completion signal as soon
as all the direct predecessors of K are completed. The rendezvous completion signal will
be used to initinte operation K and so operation K will receive exactly one initiation
signal. Thus. il all direct predecessors ot operation K are executed exactly once there are
1o hazards or incomplete rendezvous in operation K and the rendezvous associated with
it. Since the PEoperation is initiated exactly once and is the only direct predecessor of
operation 2, operation 2 must be execated exactly once with no hazard or incomplete
rendezvous errors in it or its associated rendezvous operation. Then by induction,
operation K for K greater than er equal to one must be initiated exactly once and have no
hazard or incomplete rendezvous errors. Thus, all operations are free of implementation

errors and will be initiated as soon as their predecessors are completed.

-38-

Thus, tor a sequential process without decisions, o concurrent process can be developed very casily. In fuctitis
quite interesting to observe that if” each rendezvons operation is combined with the operation following it and each
branch operation 1s combined with the operation it follows, the resulting flow chart is isomorphic to the basic

precedence graph.
3.3 PROCESSES CONTAINING DECISIONS

Figure 26 shows a more complicated process which contams o decision. Here the outputs from the direct
predecessors ol cach operation cannot be rendezvoused since this will resutt in implementation errors. In this
example, the direct predecessors of operation S are operation 3 and one of the decision outputs. These cannot be
rendezvoused. however, because the output from operation 3 with oceur every time the process is initiated white the
decision output will not occur every time. In this cuse operation 3 is execated for some initiations of the process for
which its successor s not initiated. or operation 3 is not dominated by its successor, Operation 7 represents
different case since it is not dominated by its predecessor, There are four possible dominance relations between an
operation, T, and one ol its predecessors, J, and these are listed below where 1> J means that T dominates J, and [<

J means thae T does not dominate J.
. 1 >3] >1 3.0 30,0 > 1
20> 1+ 4. T >0 1+ 1

In case one. operation Tand its predecessor are both executed under the same conditions so that the output from
the predecessor, J. can he rendezvoused with other signals and used to initiate operation I. In case two, the
predecessor is not exceuted every time operation | is executed so its completion signal must be merged with some
other signal before it can he used to initiate operation I, In case three, operation 1 is not exccuted every time its
predecessors is. so the completion signal from I must be separated into two exclusive parts, one that is subordinate
1o | and one that occurs only when 1is not to be executed. Case four is a combination of cases two and three. The
output of the predecessor, J, must first be split into exclusive parts and then the part that is subordinate to T must be
merged with other signals before being used to intiate I. in wese four it would be possible to first merge the

completion signal from J with other signals and then split the merged output, but the former approach is simpler.
3.3.1 Direct Predecessors With Conditions Equal To Their Successor

In this case cuch direct predecessor is executed if, and only if, the operation is to be executed. This is the same as
the decision-free case and the completion signals from the direct predecessors can be rendezvoused together to
generate the initiation signal for the operation. In fact. in any case where two or more direct predecessors have the
same ccnditions (they dominate cach other) their completion signals can be rendezvoused together and the
rendezvous output considered as the output of a single direct predecessor with the same dominance relation as the

operations.

CONNECTIVITY
GRAPH

-39.

PRECEDENCE

GRAPH

i

FF

FLOW CHART

FIGURE 26. EXAMPLE OF A PROCESS WITH A
DECISION

3.3.2 Direct Predecessors That Do Not Dominate Their Successor

Next consider the direet predecessors of an operation, 1, that are subordinute to I but do not dominate 1. These
predecessors are never executed unless Fis to be executed, but |is executed when some of the predecessors are not
executed. Therefore, the completion signals cannot be rendezvoused together as in Section 3.3.1 since some of them
will not be execured every time the others are executed. An example of this situation is shown in Figure 27 where
operation | has operations 2, 5, 6, 7, and 8 as direct predecessors. Since exactly one of the operations 2, 5, or 6 will
be executed when the system is initiated, the completion signats from these operations can be merged together. This
merged signal will be generated whenever operation s to be executed and the one direct predecessor 2.5, or 6 it
is executed, has been completed. Similarly the completion signals from 6, 7, and 8 can be merged together to
pronliee & sigmal when one of themt is completed. Thosetwo signals can then b iandeavouscd together to genciaiv
the initiation signal for operation | as shown in Figure 28. Each of the inputs to the rendezvous is generated if and
onlw if Tis to be initigell ded Bk 0 e - * e 3 oF W predocesser ol e 2 rprrered. Moo, 8 4
mitiated as soon as all of its direct predecessors are completed.

A general method is now presented that can be used to determine the combinations of signals that can be merged
together to form the inputs to the rendezvous operation. Each merge operation must have inputs from a set of
operations. only one of which cun be executed Tor a single initiation of the system. and one of which will be
executed if the operation is to be executed. The combinations of conditions that can be merged together are
determined by finding the directed cut sets of the portion of the control graph that is dominated by and reaches the
node corresponding to operation | A directed cut set ol the control graph is a set ol nodes whose deletion removes
all paths from the initiation node to the termiination node and such that none of the nodes is reachable from any
other node in the cut set, as discussed in Section 2.6. The directed cut sets for the control grapit of the example of
Figure 27 are shown in Figure 29. The operations represented by different nodes in o cut set arc just the operations
whose outputs can be merged together to form an input signal Tor the rendezvous operation, since the operations
represented by exactly one of the nodes in the cut set will be executed cach time 1is to be executed. Since there are
numerous cut sets the completion signals of the direct predecessors can be merged in a number of different
combinutions,

A cut set table which is similar to a prime implicant table*®7 can be used to select the combinations of merge unit
inputs to be used. The table will have a row for cach possible merge unit (cut set of the control graph) and a colummn
for each direct predecessor. The standard techniques which have been developed for prime implicant tables®7- 48
can be applied to the cut set table, such as identifying essential terms, to select a set of rows that cover all of the
columns. One merge is then required for cach row of the cut set table that is selected. Figure 30 shows the cut set
table to be used with the cut sets shown in Figure 29. The fifth row is essential to cover thie last column and row 3
covers the remaining columns. The M-R network corresponding to this covering ol the cut set table is shown in
Figure 28. There is no direct predecessor of operation } corresponding to node C of the control graph but the
required completion signal could be obtained from the decision output that reaches node C if required. Thus an M-R
network can always be synthesized to generate the initiation signal for an operation when the operation dominates

its direct predecessors.

CONNECTIVITY GRAPI

FIGURE 27.

41-

PRECEDENCE GRAPIHI

EXAMPLE OF AN OPERATION THAT IS NOT DOMINATED
BY ITS PREDECESSORS

FIGURE 28. FORMATION OF THE INITIATION SIGNAL FOR
OPERATION [OF FIGURE 27

Bk = s

R

— wems WEE I NS NN

43-

I - Node of Control Nodes in Connectivity
Graph
d

b
¢

d

FIGURE 29. THE PORTION OF TIIE CONTROL GRAPH REACHING i

AND THE CUT SETS FOR THE EXAMPLE OF FIGURE 27

DIRECT PREDECISSOR

2 5 6 7 8
1
2 X
cuT 3 X X X
SET
4 X X X
s x | x| ®

CUT SET TABLE FOR THE EXAMPLE OF FIGURE 27
FIGURE 30

Corresponding

Graph

¢

The M-R networks that are synthesized are similar to two-level or-and switching networks. In some cases more

. < . : Hord? 7 umsidlent
economical networks may be synthesized by using more than two levels as described in Miller®”, or by considering
the requirements for several operations simultaneously and using techniques that have been developed for the

synthesis of multiple output switching networks®7+ 49,

3.3.3 Direct Predecessors That Are Not Subordinate To Their Successor

Finally, consider the case where, I, a predecessor of I, is not subordinate to 1. This means that J will be executed
for some cases where | is not. Since J is u predecessor of | there must be a path from J to [in the sequence graph and
siice | does not dominate J there must be some path, from J to the termination node. that does not reach . Then
there must be ut least one decision in the sequence graph that is reached by J, that has an output thut reaches and is
subordinate to I, und that has an output that does not reach 1. Find one such decision, D, that does not reach any
other decision having these characteristics, D must be a predecessor of 1. Add a wait operation with a decision input
from each output of D. Then consider the signal input to the wait operation to be the input to an operation that has
1 as a direct predecessor und that has the same dominance refation as decision 1. The output signal(s) from the wait
operation that correspond to the decision output(s) that is (are) subordinate to I, will be generated only after J und
D are completed and only if I is to be executed, therefore. they can be used as inputs to the M-R network for I.
They can be treated as completion signals from operations that are direct predecessors of operation [and that have
dominance relations equal to those of the corresponding decision outputs. Thus, completion signals from direct
predecessors that are not subordinate to their successor can he split in this manner into signals that are exclusive »f
and subordinate to their successor. Then the methods described in Section 3.3.2 can be used to synthesize the M-R
network to initiate the operation.

The signal inputs to any wait operations that have been added must be synthesized. They will be subject to the
same possibilities us the inputs to the operations for which the wait operations were added. However. there will be
one less decision between the wait operation input and its direct predecessor than there was between the original
operation and the direct predecessor. The process of adding wait operations may be repeated a number of times for
one direct predecessor of the original operation but only a finite number need be added since there can only be a
finite number of decisions between operations | and J. Figure 31 shows un example where three wait operations
must be used to split the completion signal from operation J into parts that are exclusive of and subordinate to
operation I. In this case the three wait operations could be combined into a single four-output wait operation as
shown in Figure 32. This possibility will not be considered further, however, since the wait operation outputs that
are eliminated by this network may be required by other operations and since testing for its occurrence would
complicate the method for splitting the completion signals from the predecessors. A scan of the complete system,
after the initiation networks for all operations have -been synthesized, might be used to check for cases where watit

operations can be combined,
3.3.4 Conditional Direct Predecessors

One problem that arises when nsing the methods discussed in the preceding sections is illustrated in Figure 33.

Operation 5 depends on operation 2 but this is not shown explicitly in the basic precedence graph since it is implied

.45.

PORTION OF SEQUENCE

GRAPH

TO OPERATION |

WAIT OPERATIONS REQUIRED TO SEPARATE COMPLETION SIGNAL FROM
OPERATION J

FIGUREE 31, FXAMPLE OF THE USE OF THE WAIT
OPERATION

46-

Y

TO OPERATION |

FIGURE 32. COMBINATION OF THE 3 WAIT OPERAT!ONS OF FIGURE 31
INTO A SINGLE WAIT OPERATION

- /]

prapeiakad oo

47.

CONNECTIVITY PRECIFDENCE
GRAPH GRAPH

FIGURE 33. A PROCESS WITH A
CONDITIONAL DIRECT PREDECESSOR

FIGURE 34. CONCURRENT PROCESS FOR THE
OF FIGURE 33

EXAMPLE

by the dependence of operation § on operation 4 and of operation 4 on operation 2. Figure 34 shows the control
network which would be synthesized using the above techniques. This network has several taubts. First, the wait
operation has an unused output which could still be active after initiation of the PT operation. Second, if the
decision bypasses operation 4, then operation S can be initiated before operation 2 is completed, and the completion
signal for the entire network may be generated hefore operation 2 is completed. These problems arise because the
exceution of operation 4 depends on the outcome of decision 3.

In the previous discussions we have assumed that an operation, I, may be initiated when all of its direct
predecessors are completed. Since the direct predecessors of Frequire the execution of alt other predecessors of 1 to
be completed before they are initiated, the execution of all predecessors of I should be completed when the
completion signals from the direct predecessors of T are generated. The problem which oceurs in the example of
fAlbu.c 334 tiat T vine outcome ot dedision 8 upTdtion 4 -which 15 the Mirect ptcdducas:.r ul .1['!c|‘dliu'l'l 0% st
executed. In this case operation 2 is a conditional direct predecestor of operation 5. That s, operation 2 is an

TITOR T 1 TR i \ e e o8 P fecisiom pemy s Ilw‘ruinn ik not o predecessor ol gng
exccuted predecessor of 5. Operation 2 must be considered a direct predecessor of operation § for the decision
outcome which bypasses operation 4. I general a conditional direct predecessor of an operation, I, is an indirect
prodtesssor which ot somie comditions of cambimitions of decisian otitcomes s mat 2 predecesser of an eversted
predecessor of operation l. Conditional direct predecessors can be eliminated by modifying and making additions to

o prceieor s W p— ' il opentbione Le dlle cowmie &8 Figmas 13 aul 3 Wie i
operation is added when the initiation signal for operation 4 is synthesized. This wait operauion can be considered as
two additional operations in the process, one for each of the wait operation outcomes. These operations are fabeled
W, , amd W, 3 and added to the direct precedence graph as shown in Figure 35. They have as predecessors decision
3 and operation 2 which supply the input signals for the wait operation. Their successors are operation 4, for which
the wait operation is udded, and the successors of operation 4. The direct successor of W|,| is operation 4 but
operation 5 is the direct successor of W, since Wl.z does not reach operation 4. Thus, to its predecessors the wait
operation is treated as a single operation while to its successors it is treated as o separate operation for each of its
outputs. With this interpretation of the wait operation, the direct predecessors of each operation are att dominated
by the operation after all required wait operations have been added. Using the precedence gruph of Figure 35 the
error-free concurrent process shown in Figure 36 is synthesized.

The following rules are used to modify the precedence relation when a wait operation, W,.is added because u

direct predecessor, J, of operation Iis not dominated by [.

I. Operation J, the decision supplying the decision inputs. and all of their predecessors are
made predecessors of W,. Also, if any predecessors of W, are wait operation outcomes
then any other outcomes from the same wait operation that reach W, are made
predecessors of W, also.

2. Fand its successors are made successors of each outcome ufWi that can rcach them.

These changes can easily be made to the complete precedence relation but only thc.e additional members of the
precedence relation that are not implied by other members can be added to the basic precedence relation. In fact, it

may be necessary to delete some of the original members of the basic precedence relation when the members due to

L _— _— _—— L — —— — Mt

FIGURE 3S.

-49.

PRECEDENCE GRAPH FOR THE EXAMPLE OF FIGURE 34
INCLUDING THE WAIT OPERATION

-50-

Pl |

PT. 4

FIGURE 36. ERROR-FREE CONCURRENT PROCESS FOR THE EXAMPLE OF FIGURE 33

a new wail operation are added. In order to determine the basic precedence relation with an added wait operation
we can add all members ol the complete precedence relation that include the wait operation to the basic precedence
relation, calling this the augmented precedence relation, and then delete uny implied precedence refations.
Determination and deletion of the implied relations when a single operation is added or when several operations
which cannot be predecessors ol each other are added is much simpler than the general case described in Section
2.2.2 since no member of the relation can be implied by more than two other members. Thus all implied relations
that are in the augmented precedence matrix can be found by merely multiplying the augmentated matrix by itself.
The result of multiplying an angmented precedence mutrix by itself is shown below where P represents the original

precedence matrix.

P:B P:B P -P+B - C I PoB+
—= e = 1
I B-D
C Db C)D e I s o
CP+D-C | P B+
= 1 DD

The portion of the augniented precedence matrix labeled D must be zero since there can be no member of the
precedence relation between two outcomes of the same wait operation. Therefore all of the terms involving D ean be

dropped to give the following matrix.

1
P-P+B-C 1 P B

U

cC- P :("B

Also since there are no members of P that are implied by two other members of P it is not necessary to caleulate P
P uand since D is zero it is not necessary o ealeulate C B. Thus the following matrix specifies all of the members of

the augmented precedenee relation whieh must be deleted in order to make it a basic preeedence matrix.

B-¢c ' Pp-B

C-P 0

The following theorem shows that all predeeessors of each operation will be completed belore the operation is

initiated.

Theorem 2: Adding all wait operation outecomes to the preeedence relation insures that no operation
is exeeuted until all of its predecessors are completed.

Proof: Let I be executed for a particular initiation of the process and let } be any predecessor of

I that is also executed. If J is a direet predecessor of I then J must be ecompieted before

operation I is initiated. If J is not a direct predecessor of 1 it must be the predccessor of

i

some direct predecessor, K, of 1. We will show that there is a chain of operations |, K,
Ko_y» - K, Jwhere K_isan executed direct predecessor of 1, J is a direet predecessor

of K ,andK, |
Let Q be any operation that is a predeeessor of 1 and that has J as a direct predecessor.

is an executed direet predecessor of Ki fori=2,3,...n.

There must be one such operation unless J is a direct predeeessor of I. Q is either a wait
operation outcome or not. If it is not 4 wait operation cutcome then it must be executed
since its direct predeeessor is execited. If Q is a wait operation outcome then the wait
operation must be exeeuted and one of its outcomes nust be executed. The exeeuted
outcome must be able to reach operation 1, since otherwise, I would not be executed.
Since the executed wait operation outcome ean reach I and | has one outcome of *he wait
operation as a predecessor the executed outcome must be a predecessor of I. Thus, there
must be an exeeuted operation that is a predecessor of I und that has J as a direet
predecessor. We can eall this operation K, and if K, is not a direet predecessor of 1 we
ean repeat the above argument to find an executed operation, Kz’ that is a predeeessor of
I and that has K, as a direet predecessor. Since there are only a finite number of
operations in the process, an operation, K, . must eventually be found that is a direct
predeeessor of operation I. Then since each of the K, operations is executed and is
executed only after its direet predeeessors are completed, operation | must be initiated
only after operation J is eompleted. Since operation J is any arbitrary predeeessor of 1 the

proof is eomplete.

The addition of the wait operations to the preeedence relation in the manner deseribed above is not neeessary to

insure an error-free process as Figure 37 shows. This is an alternative to the one in Figure 36 and allows operations 2

and 5 to be executed concurrently if operation 4 is not exeeuted. Exeeuting operations 2 and 5 eoncurrently may

result in sequencing errors but this cannot be determined from the precedenee relation sinee we consider the

precedence relation to be transitive. Additional tests would be required to determine whether operations 2 and 5 can

be executed concurrently without sequeneing errors. Since attempting to identify these cases and allow the

additional concurrent operation would complicate the methods deseribed, we will not consider this possibility

further.

3.3.5 Proof That The Synthesized Network Is Error-Free

Theorem 3:

Proof:

A eoneurrent process synthesized from a preeedence relation and dominance relation of a
loop-free sequential proeess by adding wait operations to make all direet predecessors of
each operation subordinate to the operation and by using cut sets to synthesize the
initiation signals for each operation is error-free,

Each operation is initiated only after its direet predecessors ave completed and by
Theorem 2 this insures that all predecessors of the operation are eompleted before it is

initiated. This, there can be no sequencing errors in the process. Every operation has s

.53.

P1 1

PT ¢

FIGURE 37. A CONCURRENT PROCESS WHERE AN OPERATION DEPENDS ON

ONE BUT

NOT ALL OUTPUTS OF THE WAIT OPERATION

3.4 SUMMARY

predecessor since the Pl operation is a predecessor of every other operation.The use of
cut sets insures that if a rendezvous operation receives an initiation signal on any input it
will receive exactly one signal on all inputs and that no merge operation can receive more
than one initiation signal so there are no hazard or incomplete rendezvous errors. The
completion signal from every operation in the process must be generated before the
termination operation is initiated since it has all the operations of the process as
predecessors, thus all operations are completed when the termination operation is

exccuted.

A summary of the steps used to synthesize a concurrent process from a sequential one, as described in this

chapter. is given below.

(%3

6.

Determine the precedence relation, dominance relation and control graph for the process.
Find an operation, 1, whose direct predecessors have had their initiation signals
synthesized or else whose only direct predecessor is the Pl operation.

If any direet predecessor of 1 s not dominated by [add a wait operation and update the
precedence relation as described in Sections 3.3.3 and 3.3.4 and then return to step 2. 1f
all direct predecessors of 1 are dominated by 1 go to step 4.

If any direct predecessors of 1 have the sume dominance relation, connect their outputs to
a rendezvous operation and use the rendezvous output in place of the operation outputs.
Find the cut sets for operation | and use a cut set tuble to pick the combinations of
signals to be merged together. Rendezvous the output signals from each merge and use
the rendezvous output as the initiation signal for 1.

If I'is not the PT operation return to step 2.

4. PROCESSES CONTAINING LOOPS

In 4 loop-free process 1o operation cun be executed more than onee for a single initiation of the process. In terms
ol the connectivity graph, a loop-free process is one in which there is no chain of ares I'rom a node that reaches the
node again, or the main diagonal of the reachability matrix is all zeroes. Processes containing loops are processes in
which some operations may be executed more than once for a single initiation of the process. An example of a
process contiining a loop is shown in Figure 1. This process calculates the product of the contents ol register B and
the contents ol the right haif of double |C|!llll register A and fegves e il in tegitter Opemtion s & Jecmioin
which determines whether operations 4 to 8 will be repeated.

Consider a sequence graph that represents a loop-free process. If the addition of an are from node I to node J
would introduce a loog into the s she e i eolloc o Foeme e T 7 ComTSpo AETE YU The Feclba R wic
is the set of nodes that are in the maximally strongly connected subgraph®? formed by the addition of the leedback
arc. Node J is called the loop entry node (LE node) of the loop and node Fis called the loop exit node (LX node). If
any node in the loop, except §, has an are directed to it from 1 node outside the loop, the node is culled a secondary
entry node. Similarly, a node other than node I that has an are directed from it to a node outside the loop is called a
secondary exit node. If two loops have one or more nodes in common but all nodes of one loop are not contained in
the other loop, they are called intersecting loops. H all nodes of one loop are contained in another loop they are
called nested toops and il two loops have no nodes in common they are called disjoint loops.

The feedback ares can be determined by caleulating M.S.C. subgraphs as described in Section 2.3 and each
feedback arc can be identificd with two nodes designated us the loop iuitiation node (LY node) and loop termination
node (LT node) as shown in Figures 38 and 39. These nodes are added to the graph and differ from the LE and LX
nodes in that they do not represent operations of the original process. Consider the sequential execution ol the
process shown in Figure 39. Each time one of the LT podes is reached the corresponding LI node will be executed

next. A possible sequence of operation executions Tor this :ystem would be:
1.2,3,LT LI 2.3, LT, L}, 2.3.4, LT, LI,.3.LT , LI, 2.3.4.5

We will call the execution of the operations from and including an initiation node to and including the Tollowing
termination node the execution of a cvele of the system. Between the execution of the Nth and Mih cycles ol a
system exactly M N feedback ares must be traversed and the first node of the Tirst cycle must always be the PI node
while the last node of the last cycle must always be the PT node. The sequence ol operation executions given above

contains the following five cycles:

cycle 1 1,2,3, LT,
cycle 2 L1, 2.3, LT,
cycle 3 LL,,2.3,4, LT,
cycle4 LE. 3, LT,
cycle 5 LE.2,3,4,5

LE,LX,

A CONNECTIVITY GRAPH
CONTAINING 2 FEEDBACK ARCS
FIGURE 38

.56~

LE,.LX,

THE CONNECTIVITY GRAPH OF FIGURE 2 WITH THE
FEEDBACK ARCS REPLACED BY LOOP INITIATION

AND TERMINATION NODES
FIGURE 39.

Since an operation may be executed more than once we must distinguish between diflerent executions of the same
operation. In the above example operation 3 is executed five times. once for each cycele. A particular execution of
operation 3 can be identified by specilying the cycle on which it occurs,

The Tollowing section discusses several dillerent types of concurrent operation that are possible in systems
containing loops and the next three sections discnss dominance relations, execution relations, and cut sets in
processes containing loops. Sections 4.5, 4.6, and 4.7 discuss methods Jor synthesizing concurrent processes trom

sequential processes containing loops,
4.1 CONCURRENT OPERATIONS IN PROCESSES CONTA:NING LOOPS

Concurrent execution of the operations of « process can be separated into three categories. The ones chosen.
although somewhat arbitrary, are convenient hecause they correspond closely to the types of concurrent execution
allowed by the synthesis methods to be presented. In the previous example, concurrent execution ol operations 2
and 3 in the same cycle (for example, cycle 1) would be type A concurrency.

Type B concurrency is concurrent execution ol two operations which are in dilferent cycles but where the
operation which would be executed first in the sequential execution of the process can reach the otlier operation
even with all feedbuack arcs deleted. b the preceding example, execution ol operation 2 of cycle | concurrently with
operation 4 of cycle 3 would represent type B concurrency while execution of operation 3 of cycle 3 concurrently
with operation 4 of cycle 3 would represent type A concurrency.

Finally, type C concurrently represents concurrent execntion of two operations where the one that would be
executed first in the sequential process can only reach the other operation over paths containing one or more
feedback ares. An example of type C concurrency would be the concurrent execution of operation 3 of cycle 2 with

operation 2 ol ¢eycle 3.
4.2 DOMINANCE RELATIONS IN PROCESSES CONTAINING LOOPS

As in the loop-free case. we will reguire the dominance relation between cuach operation and its direct
predecessors. The introduction of loops complicates the determination of dominance relations since some operations
may be executed more than once for 4 single initiation ol the process. Consider the example shown in Figure 40
where operations 2, 3, and 4 may be executed on any number of cycles but operations | and 5 will be executed only
once for each initiation of the process. If operation 2 is executed, operation | must be executed also, however,
operation 2 may be executed many times while operation I is exccuted only once. In this case only the execution of
operation 2 on the first cycle corresponds to the execution ol operation 5. Therelore operation | does not dominate
operation 2, and operation S does not dominate operation 4. The delinition of dominance given in Section 2.5 thus

must be revised to the following:

Operation 1 dominates operation 1 if Tor erery
execution of operation J, operation 1 mnst be

execnied also.

.58.

1 1 0 0 0 1
2 1 1 1 1 1
3 0 0 1 0 0
4 1 1 1 1 1
5 1 0 0 0 |

DOMINANCE RELATION

CONNECTIVITY GRAPH

FIGURE 40. A CONNECTIVITY GRAPH AND ITS DOMINANCE RELATION

The dominance relation in Figure 40 was developed from the connectivity gruph by inspection. H shows that the
conditions for the execution of operations | and 5 and of 2 and 4 are equal and that operations 2 and 4 dominate all
operations of the process.

It any operation, J, is a direct predecessor of an operation, I, then the dominance relation between them must be
determined. Virst consider the case where operation J cun reach operation I only over paths which contain u
feedback arc. Then if § is executed, | muay or may not be executed since there will be a path from J to the PT node
which does not include 1. Therefore I will not dominate J. Operation J may dominate operation | but this
information is not required for the synthesis since the only information required between two operations is whether
they dominate each other, aund whether an operiation dominates its predecessor. Both of these questions are
answered by the fact that operation I cannot dominate operation J.

Next consider the case where operation § can reach operation I over a path that contains no feedback ares. In
Section 2.5 the dominance relation for a loop-free process was found by deleting each node in suceession and
determining which remaining nodes could not reach the Nth node or be reached from the first node of the
connectivity graph. Any node that could not reach the Nth node or be reached rom the first node was dominated
by the deleted node. In the example of Figure 40, deletion of node | preventts any other operation from being
reached by the first node. However, nod. | does not dominate all of the other nades because of the loop. Operations
2, 3, and 4 can be initiated on a path other than the one starting at the Pl node, specifically the one initiated by the
feedbuck arc.

For u system with foops the calculation of the dominance relation described in Section 2.5 must be revised
slightly. Instead of merely testing whether un operatien can reach the Nth node and be reached by the first node, «
test must also be made to determine whether the operation can reach itself. For if operation § can reuch itself after
node | has been deleted, operation § can be executed any number of times without a corresponding execution of
operation 1. Thus operation | dominates J if deletion of operation I prevents node J either from reaching the Nth
node or being reached Irom he first node, and prevents operation § from reaching itself. Otherwise operation | does

not dominate operation J.

Theorem 4: Node I dominates node J if and only il deletion of node I prevents node J either from
reaching the Nth node or being reached by the first node of the connectivity graph and
prevents J from reaching itself.

Proof: Consider any two operations, [and J, and assume that operation I can reach operation J
over a path containing no feedbiek arcs. The first time that J is executed it must be
reached by a path from the first node that does not include operation J. The following
exeeutions of operation J require a path from operation J to itself. If deletion of
operation 1 prevents operation J from being reached by itself or the PI operation, then
operation I must be on every path from the PI operation to operation J and every path
from operation J to itself. Then operation I must be executed every time that operation J
is executed und, therefore, operation I dominates operation J. Next assume that
operation I dominates operation J or thut operation 1 must be executed every time that

operation J is executed. Then operition I must be on every path from the PI operation 10

-60-

operation J, since otherwise operation J could be executed without a corresponding
execution of operation 1. Similarly, operation I must lie on every path from J that reaches
J again or there could be an execution of operation J without a corresponding execution
of operation I. Thus, when J follows [, operation Fdominuates operation J if. and only it
deletion of operation T removes all paths from the PFoperation to J and from J 1o itself,
Similar arguments can be used to show that when [follows J, operation | dominates
operation Jif and only il deletion ol operation Feliminates all paths by which J ¢an reach

the PT operation or itself.
4.3 PRECEDENCE RELATIONS IN PROCESSES CONTAINING LOOPS

A precedence relation cannot be established directly for a graph containing loops®© since uttempting to do so will
usuglly result in an operation being required to precede itself. This is illustrated in the example of Figure 41, If
operation 2 must be completed before operation 3 can be initiated and operation 3 must be completed hefore
operation 2is initiated the second time. the precedence diagram is as shown in Figure 41, which requires operation 2
10 be completed before it can be initiated. This occurs because the precedence relation mukes 1o distinetion between
the first and second time that operation 2 is executed. One solution, suggested by Marimont®?_is to “unwind"* the
loop as shown in Figure 42. Each successive iteration of the loop is represented by repeating the nodes that form the
loop. This transforms the cyclic graph into a loop-free gruaph and allows the precedence relations to be established if
the number of cvcles is known.

{
Another method”: 3¢ 37

. which will be used here, is to repeut one copy of the process and to establish the
precedence relation between operations in the two copies. The repeated copy of the process is used to allow the
establishment of the precedence relation between operations which can be reached only over paths containing
feedbuck arcs. This is illustrated in Figure 43 where the nodes with unprimed numbers represent operations in one
copy of the process and the nodes with primed numbers represent the operations from the preceding copy.
Operation 2 follows the process initiation node or operation 3 of the preceding cycle. depending on whether
operation 2 is being executed for the first time. In the example shown iu Figure 44, operation 2 aud operation 3 of
the first cycle may be executed concurrently, and operation 6 may be executed concurrently with all cyeles of the
process. Al<o, operation 4 of one cycle may be executed concurrently with operation 3 of the preceding cycle.

The method described in Section 2.4 for determining the decision precedence relation must be modified slightly
when a process contains loops. In the connectivity gruph of Figure 45 operations 5 and 6 do not reqnire decision
operation 4 10 be completed belore they are initiated while in Figure 46, operations 5 and 6 cannot be initiated nnil
decision operation 4 is executed and the decision outcome is to execute operation 5. Operations 5 and 6 mnst follow
decision operation 4 in Figure 46 because there is a path from the decision to the termination node that does not
pass through operations S and 6. Thus, until the outcome of decision 4 that connects to operation 5 is takei. it is
possible that operations 5 and 6 will not be exeented. In the example of Figure 45 we exclude the possibility of the
loop being exccuted an infinite number of times and therefore operations 5 and 6 must be exceuted eventlly,
regardless of the outcome of any particular execution of the decision.

Consider any possible sequential execution of a process up to and including the execution of operation 1. | st

depend on the closest decision, J, to | that can reach the PT node without passing thirough [, since until that decision

-01-

%
D i B

'ONNECTIVITY GRAPII
* SR PRECEDENCE GRAPH

FIGURE 41, A PROCLESS WITIL A 10OOP

SEQUENCE GRAPH

PRECEDENCE GRAPII
FIGURE 420 THE PROCESS OF FIGURE 41 WITII THE LOOP “UNWOUND™

De®a®
Cp=C)

o

CONNECTIVITY PRECEDENCE GRAPH
GRAPH

FIGURE 43. THE PROCESS OF FIGURE 41 WITH ONE COPY OF THE LOOP REPEATED

55 By D pa &

0:9:0:0:0:0:26

THE CONNECTIVITY GRAPH A POSSIBLE PRECEDENCE
CONNECTIVITY WITH A REPLATED COPY OF GRAPH
GRAPH THE PROCISS

FIGURE 44. A PROCESS WHICH ALLOWS CYCLE TO CYCLE CONCURRENCY

FIGURE 45
A Process in Which the
Execution of Operation §
may Preceed the Execution
of operation 4

.(\3.

FIGURE 46

A Process in which the Execution
of Operation 5 may not preceed the
Execution of operation 4

-0 -

iy exeented Tmay be by passed. The onteome of the decision dut reaches T amst be dominated by | smice of that
outeome is taken, Fmuost be execated because no path can by pass Land becsuse decision § camtot be reached again
before Tis executed. Thas, if a decision has an outcome that is dommated by operation. Tand the decision can veach
the PT node with 1 deleted. then operation | st have that decision as a predecessor. | eannot lave any other
deenion along the same path as a diveet predecessor sinee when decision J is completed, operation I can be mitated,
withont considermg the outeome of any other decisions. Thus., | can have as disect predecessors ondy thase decisions
which can reach the PT node with | deleted and that have an onteome tat is domuated by 1 Conversely any
decivion that satsfies these two requirements will be 3 direct predecessor of | for some paiticular execution
seqicnce. The required information can easily be found sand the decision precedence relanon determimed when the
domimanee selation s calenlated.

I the Joops ma process are nested. repeating one copy of the process will allow the precedence relation between
any pain of operations to be determmed ¥ 27 flowever, if ihe OOPs e ntesecting, as shown m the example of
Fignre 47, the members of the precedence relation hetween some opetations may not he tound. h dus example.,
assine that operation 3 reqired to follow aperation 6 when the operations me executed in the following order:

9

A0 TS 2030 This cannot be determined from the precedence velation formd from a single 1epe o of

3

the process since the path fronn operation 6 to operation 3 iy not incloded. In fuer, if Ay operation, I, cin be
reached from another operation, J, onfy over s path which wiclndes two or more feedback snes, the path will not be
shown exphertly when onhy two copies of the process are osed. Additional copres of the process can be used 1o nighe
all simple paths between operations explicit, but with a Large number of feedback mes iy copies of the process
could be required. In order 1o require consideration of only one additional copy of the process, members wilt be
added 1o the precedence velation 1o tequire that operation pecede operation 1 when there s 3 path from (o |
that contans two or more feedback ares and no path trom 3 to et contans ondy one of the feedback arcs.
Constder a process with a path from an operation. | to an operation, |, contaming two feedback mes sneh that no
path from J to 1 contains only one of the feedback ares and fet the first feedback are traversed be from | X, tol I,
and the second one from LX2 1o I.I{: Then the following conditions must be satisfied by the feedback free

cosnectivity gaaph where =M indicates that | reaches K 1=K indicates that 1. does not reach K.

hi=IX,
2D =X,
HLE~I
HLE A1
S ILX,

The first three conditions are necessary for the path from J 1o 1 1o exist. The fonrt condition mnst be tine or the

following path. containing only the first feedback are wonld exist
bl

Sitdarly it the 1ifth condition is not satisfied 4 path from o T wall exist that contains only the second feedbyek

AT

1OOP 2

LOOP |

FIGURE 47. A CONNECTIVITY GRAPH IN WHICH OPERATION 6 CAN

REACH OPERATION 3 ONLY OVER A PATH CONTAINING 2
FEEDBACK ARCS

-06-

The following three conditions can be derived from conditions | through 5 and the fact that each LE node must

reach the corresponding LX node.

6) LX,F+-LE,
7)LE #~LE,
8)LX 7~LX,

Condition 6 must be true, for otherwise condition | would imply that J->LE2 and therefore that J==LX, in
contradiction to condition 5. Conditions 7 and 8 must be true for if either one is not true there is a path from J to |
that includes only one of the feedback arcs.

Thus, in any case where an operation, J, can reach an operation, I, over 4 path containing two feedback arcs but
not over a path which does not contain both feedback arcs, conditions 2, 6, 7, and 8 must be satisfied. Several
examples are shown in Figure 48. In every case operation | will have LX, as a predecessor since operation I cannot
be executed until the decision outcome specifies that the feedback arc is to be tuken. If operation J is made a
predecessor of LX, then I cannot be executed until J is completed. This can be accomplished by adding a member
to the precedence relation from J “to LX,. In general, we can add a precedence relation from any operation, K, to
each LX node that K can reach only over a feedback arc and whose corresponding LE node operation K cannot
reach over that feedback arc. This will insure the existance of a precedence relation between any operation and
another operation which can reach it only over a path containing two feedback arcs. Therefore, two copies of the
process will be sufiicient to express all members of the direct precedence relation. In the example of Figure 47 this
will require operation 6 to be completed before operation 5 of the following cycle is initiated. This reduces the
possibilities for concurrent operation since operation 6 of one cycle and operation 5 of a following cycle cannot be
exccuted concurrently even if they are independent, but it simplifies the concurrent process synthesis and the

representation of the precedence relation.
4.4 CUT SETS IN PROCESSES CONTAINING LOOPS

As in the loop-free case, cut sets of the control graph will be used to determine which completion signals from the
direct predecessors of an operation, I, can be merged together. A cut set must consist of a set of nodes of the control
graph such that one and only one node of the set will be in each path from the initiation node to operation I or from
operation | to itself. A cut set for an operation, 1, is thus defined as a set of nodes of the control graph satisfying the

following four conditions:

1. Each node can reach I over a feedback free path.
2. Each node is dominated by 1.
3. No member of a cut set can reach any other member over a path that does not include 1.

4. If any node is added to the set then one of the first three conditions will be violated.

Y —

-67-

FIGURE 48. TWO EXAMPLES OF PROCESSES WHERE OPERATION J CAN REACH
OPERATION | ONLY OVER A PATH CONTAINING TWO FEEDBACK ARCS

-68R.

Consider the example of a control graph shown in Figure 49. All nodes which may he members of tlie cut sets for

I'must satisfy conditions | and 2 and these nodes are drawn with a heavier circle. The cut sets are;

{5.4.14) . {5, 4.13.15).{5.10. 16, 15} .{9. 16, 15}.

Clearly every node that reaches | and is dominated by I must be in some cut set for I. Now we must prove that

any path from the initiation node to I or from | to itself must pass through a member of each cut set for |.

Theorem 5:

Proof’

Every path in the control graph from the initiation node to 1 or from I to itself must pass
through exactly one node of each cut set.

No path can pass through more than one node of any cut set since if it did , one node of
the cut set would be able to reach another node of the cut set, in contradiction to the
rules for forming cut sets. Next we must show that at least one node from cach cut set
will be on every path. Consider the sequential execution of any path in the control graph
reaching | and let it be composed of nodes N, NyuNj N NJ. <Ny Lin that
order. Let N, be the fast node that reaches any mentser of a cut set, Z = {7.., Zy
Zy oo zi}. Let Nj be the first node that can be reached by a member of the cut set. Since
a member of the cut set can reach Nj and since N, can reach a member of the cut sct, N,
must precede Nj or 4 member of the cut set would be able 1o reach some other member.
Furthermore, since N; must hiave at least two extant arcs, there must be at least one node,
NJ._ ;- between N, and NJ. of the control graph. If node NJ. _y isdominated by I then Z is
not a cut set because Nj_l cuuld be added to it without violating any of the restrictions.
Thus if Nj_l is dominated by 1. a member of the cut set Z must lic on the path reaching
1.

If 1 does not dominate Nj--l then NJ. _, Must be able to reach the PT node or itself,
with node | deleted. Node Nj_l cannot reach the termination node with | deleted, since
if so NJ.. and thus a member of the cut set could reach the termination node with 1
deleted. Then NJ._l must be able to reach itself and therefore Nj must he able to reach
N,_, Let N;_¢ be the carliest node that N, can reach. Node N; ¢ must come after N,
since. if not. a member of the cut set could reach some other member. Also. as before.
there must be a node N; ¢, between N, and Nj_Q' If Nj_Q.,, is dominated by I then Z
is not a cut set. If node N;_g_, is not dominated by I then it must be able to reach the
PT node or itself with node I deleted. If it could reach the PT node the member of the
cut set reaching N; could reach the PT node also, and Z would not be a cut set. If N o,
cannot reach the PT node it must be able to reach itself, but then N, could reach
N;_¢_, and therefore N; could reach N, g, in contradiction to the assumption that
node Nj,.Q was the earliest node that node Nj could reach. Thus, there nrust be 4 member

of each cut set of 1 on every path to node | from itself or from the PI node.

e — O—, =

-09-

&)

FIGURE 49. A CONTROL GRAPII

4.5 SYNTHESIS OF PROCESSES WITH TYPE A CONCURRENCY

A simple method for treating processes with foops is to add additional members to the precedence relation that
will climinate any concurrency between cycles. That is, we will require all operations in one cycle to be completed
beloie any operations in the following cycle ure initiated. When the precedence relation is zulculated, a single copy
of th:e process is used, and members are added to the precedence relation to require every operation which reaches
an LT node to precede it and to require every operation witich can be reached by an LI node to follow it. A decision
and merge are added to the process as shown in Figure 50, with an output Tor each initiation node and an input for
each termination node, respectively. The decision represents the possibility of initiating the process by the process
initiation node or by one of the loop initiation nodes. These additions transform the process into loop-free process.
The dominance retation and precedence relation for the process can be determined as discussed in Section 2.5 since
the modified graph is loop-free.

After the precedence relation and dominance relation are determined a concurrent process is synthesized as in the
loop-free case, except that the added decision and merge operation are omitted. The output signal from cach LT
operation is then connected to the input of the corresponding LI operation to complete the process. Since every
operation that can reach an LT node is a predecessor of it, the LT operation cannot be execuled until every
operation in the cycle of the process which it terminates is completed. Also, no operations in a succeeding cycle can
be initiated until the loop initiation node that starts that ¢ycle is completed. Thus, all operations in one cycle of the
process are cxecuted before any operations in the following cycle are initiated. The execution of the completc
process can be considered to be a series of executions of a loop-free process, with possible concurrent execution of
operations within each exccution of the loop-free process. There is, however, no possibility of concurrent execution

of operations in different eycles.
4.5.1 Example

Figures 51 to 54 show an application of this method to the process for multiplying two 12-bit numbers that is
shown in Figure 1. The multiplier is in register B and th:e multiplicand is originally in AR, the right half of double
length register A. Register C is used as a counter to record the number of cycles completed.

Figure 51 shows the connectivity graph, precedence graph, and dominance matrix for the process. with the
feedback arc replaced by L1 and LT nodes. The flow chart for the proces.: synthesized from these relations is shown
in Figure 52. The operations of incrementing and testing the connter are performed concurrently with the
operations 1o test the multiplier, add the multiplicand, and shift the partial product. Also, the initializing operations
of clearing registers C arid AL are performed concurrently with some other operations in the first cycle.

Several changes can be made to reduce the amount of concurrent operation permitted, and thereby reduce the
number of eontrol operations required. The execution of operations 2 and 3 with operations in the first cycle of the
loop is called loop entrance concurrency and can be eliminated if operations 2 and 3 are required to be completed
before any operations within the loop are initiated, thereby climinating the need for the wait operation that follows
decision operation 4. This will reduce the time required for each cycle of the process since there will be fewer

control operations in the loop, but will climinate the concurrent execution of operations 2 and 3 with other

Rl DL Rl b

FIGURE

50.

)

A CONNECTIVITY GRAPH WITH ADDED DECISION AND
MERGE OPERATION

CONNECTIVITY
GRAPILI

PRECEDENCE
GRAPH

_/ FIGURE 5].

I 1}
Connectivity “graph, Precedence graph, and Dominance Relation for the Example of Figure |

.73

LT,

L1,

9

(4}

S e E = | = 2 =8 =
2 B S s - c - <
SN CINE = = =1 S} =
s 8 = =S| = g 2 &
© < 2 o - c © o -

w

-4
= = < o - 2 e o jo)

e

.
S S - - =2 e
= =) > - > o ©
- - - < - = 2| =
- = - 2 = 2 & 8
- - - S - c o <

|
= =
—_— (ol o v = = - —
a al s . - . — —

4.

M

I
Al.=—01 « —_——~—
. - ™~
=0 3 .rf \\
M 4 \
L. \
\
- - \\
ARl : M \
. |
I
- |
. I
_ AL =—AL+H ’
M |
/
SHIFTR A & /
/
/
/
Cm=04 4 //
/
//
_ v 3 /
5 /
/
/
" /
I /
Y /
/
i LT 7
\\)

S~

-~
FIGURE 52. CONCURRENT FLOW CHART FOR THE EXAMPLE OF FIGURE 1

.75-

operations of the first cycle. Whether the overall result will be an increase or decrease in the total execution time
depends on the number of cycles that will be executed and the ratio of time saved in cach cyele of the process to the
additional time required for initialization of the first cycle.

To determine the control network for the process with no entrance concurrency, an additional node. X. can bhe
added to the precedence graph und connectivity graph as shown in Figure §3. Every operation o the loop is required
to follow the udded node and every operation outside the loop which is u predecessor ol an operation within the
loop is made a predecessor of the added node. Figure 53 also shows the Mow chart for the concurrent process
synthesized with the added operation. Comparison of Figures 52 and 53 shows that the delay associated with one
wait operation has been eliminated Trom the execution of each cyele.

Another step which can be taken to reduce the control network complexity is to muke every operation i the
loop precede decision 8, thereby eliminating concurrent execution of operations with the loop exit decision, This
will eliminate the need for the wait operation connected to the output ol decision & but will increase the operating
time since decision 8 will not be executed concurrently with any other operations. tn this case the increase in
operating time will be slight since the time required Tor the decision is small, In g similar situation the decision might
be a more complex operation which required considerable time to complete, and i that case the increase in
operating time would be much greater. The precedence graph, with all operations required to be completed before
operation 8, and the corresponding control flow chart are shown in Figure 54. Table | gives a compatison of the
operating times and module requirements for the macromodular implementation of the different configurations. For
comparison the times and module requirements are also given for the sequential system of Figure | and for a system
with all operations completed before decision 8 but with entrance concurrency. The times assumed for the various
operations are listed in Table 2. The calculations Tor total times assume that the addition (operation 5) is perlormed
lor hall of the cycles executed.

Several interesting observations can be made Irom the tuble, First, significant operating time savings can be
#chieved by allowing concurrent operation. I ais equal to 200ns, one of the concurrent systems requires only 64%
of the time required for the completely sequential system. Second, although more equipment is required for the
system with concurrent operations, the number of multiplications per second per module can be increased by using
concurrent operations in this example.-Finally, the system with the most concurrent aperation does not have the
shortest operating time. The system with entrance concurrency 1s slower than the one without this concurrency
because the additional control operations required increase the execution time slightly Tor each cycle of the process.

while speeding up only the lirst cycle,
4.6 SYNTHESIS OF PROCESSES WITH TYPE B CONCURRENCY

The method developed in the preceding section is effective for some processes but may severely restrict the
concurrent execution of operations in processes like the example shown in Figure 55. Since the metliod of Section
4.5 requires all operations in one cycle ta be completed before any operations in the following cycle cun be initiated,
the only possible concurrent execution of operations in the two loops would occur on their only conunon cycle, the
last cycle on which loop | is executed and the first cycle on which loop 2 is executed.

In order to allow concurrent execution of operations in different cycles we will add precedence relations from tle

L# nodes to all nodes that can be reached by the LI node and cannot be reached by the corresponding LX nade and

76-

®

|
(W)
W
)
(&
X
| ()
(1)
CONNECTIVITY FRECHDENCE V :
()

Oﬂoeceooe

GRAPH LRAPH

WAIT

l 4

FIGURE 53. THE LEXAMPLE OF FIGURE 52 WITHOUT LOOP ENTRANCE
CONCURRENCY

77.

L), OO OO

0 O

PRECEDENCE
GRAPH

1
FIGURE 54. EXAMPLE OF FIGURE 52 WITH ALL OPERATIONS PRECEEDING OPLERATION 8

yO1-LG0

LO1-60°1

L1611

GOL-8EI

LO1-8T1

(00T = ©) ANpojy 134
PUOIDS S13]

suoneadningy

-

}

o e et

2 UIYS PPV sy yang uoneiad Sulssadold duQ twojag o dull] = 0,

scil 00’1 08co VLY + 088C vy o+ O
9cl 3L°0 secL Vol + Sihy 07 + <soc
SLHI LL0 stll Vol +osEey OC + SLO re
'l 90 YOS Vel + SYIC og o+ sL ve
vl $9°0 0o o6l + 0C0CC O¢ + ol s
pannbay (00T = D) WIISAS (00T = ©) UONEZLEIIU] pPaWIO}I3g 3InGi g
sanpPON jrnuanbag suoun ot Suipnpouj su sl uonippy
mor AL OL Ay ul dqwi [RI0L ay J|

AUL] UONNAIXY

SINAWTAINOTY ATNAOW ANV STWILL NOLLASEART 40

3PK) duQ 104

su w L awig

NOSIdVANOD

jenuanbag

Adua1nduo)

uolsd3g UXg oN

A2Ua1Induo)
sdxucnuy 1o

uoIsAQ UXyg ON

Ldusunu0)

DURNUF ON

Adua1ndu0)

wnuxepw

wNSAS

Operation

Decision

Merge

Branch

Rendezvous

Wait

Add, Shift, Etc.

79.

TABLE 2

EXECUTION TIME FOR MACROMODULE OPLRATIONS

100

20

20

ns

ns

ns

ns

ns

ns

Time

From the time the last
of the two initiation

Signals is received

-80-

FIGURE 55. A CONNECTIVITY GRAPH WITH TWO LOOPS

r———

EY |

to each LT node from operations that ¢an reach it and cannot reach the corresponding LE node. These precedence
relations will msure that if any operation, J, can reach another operation, I, only over a path that contains a
fuedlack ato, thut operation ¥ will be completed Uefote operation s mitiated. W spetation'¥ can reach operationdt
over a path that does not contain a feedback arce then the precedence graph will show any required precedence

remtows Wil Hie gmecailivwar il i sl ilimsiiilioe ST TN | (TS TITTTees [Sy | PSS B -‘r‘lil‘ a

s

concurrent process can be synthesized as follows:

1. Determine the dominance relation as described in Seetion 4.2.

2. Determine the precedence relation for a single copy of thie process requiring each operation to be a
predecessor of uny LT node it reaches if it does not reach the corresponding LE node and requiring each LI
node to be a predecessor of any node not reached by the corresponding LX node.

3. Select an operation, I, other than an LI or the PI operation, whose direct predecessors all have either had
their M -R networks syntliesized or else are L1 or PI nodes.

4. If any direct predecessor, K, of I is not subordinate to 1, find the closest decision to K that can be reached
by K. that reaches 1, and that has an output that is dominated by 1. Add a wait operation that reeeives its
decision inputs from the decision and make K a predecessor of the wait operation and the wait operation a
predecessor of operation 1. Update the direct precedence relation as described in Section 3.3.4 and return
to step 3.

5. If any direct predecessors of | have the same dominance relation, connect their outputs to the inputs of a
rendezvous operation and use the rendezvous output in place of the operation outputs.

6. Determine the cut sets for I and use a cut set table to choose a group of cut sets that cover ull of the
predecessors of | and synthesize the corresponding M—R network.

7. If alt operations have not had their M—R networks synthesized return to step 3.

8. Connect the loops by combining each LT node with the corresponding LI node.

Unfortunately, the author has not been able to prove that a process synthesized as described above will be
error-free, however, no counter-examples have been found. Figure 56 shows a connectivity graph, a precedence
relation and the concurrent process that would be synthesized from them. The two loops of the process can be
executed independently and type B concurrency is allowed since operations in any cycle of the second loop may be

exccuted before the execution of the first loop is completed.
4.7 SYNTHES!S OF PROCESSES WITH TYPE C CONCURRENCY

The methods developed in the preceding sections are effective for some systems but do not allow any concurrent
operation between operations in successive cycles of the same loop. In order to consider concurrent operations
between successive cycles of a loop the precedence relation between operations in two copies of the process must be
determined as discussed in Section 4.2,

Figure 57 shows an example of a system with a single loop and the corresponding precedence and connectivity

graphs including a repeated copy of the loop. When the initiation network for each operation is synthesized, the

CONNECTIVITY GRAPH PRECEDENCE GRAPH

b

6

FLOW CHART
FIGURE 56. AN EXAMPLE OF TYPE B CONCURRENCY

N

-83-

CONTROL FLOW CHART

CONNECTIVITY GRAPH

FIGURE 57. A PROCESS WITH A
SINGLE LOOP

PRECEDENCE GRAPH

DOMINANCE MATRIX

primed nodes are considered to represent distinct operations although they actually represent the same operations as
the unprimed nodes for a preceding cycle. Initiation networks will be required only for the unprimed nodes since
they include all operations of the system,

The initiation networks which would be synthesized for the operations by application of the methods discusscd
in Chapter 3 are shown in Figure 58, Operation 2 has three direct predecessors, the Pl operation and operations 3
and 5" from the preceding cycle. Operation 2 dominates operation Pl and the output of 5 "that reaches operation 2
but it does not dominate operation 3 A wait operation is added whose decision outputs come from § "and whose
signal input has operation 3 "as a predecessor. The wait operation output corresponding to the decision outcome that
reaches operation 2 is dominated by operation 2 and depends on the completion of operations 5 ‘and 3 ' This signal
and the one from the PI node form a cut set for operation 2 that includes all predecessors of operation 2. Since this
is the only cut set for operation 2, these signals must be merged together as shown in Figure 58 10 form the
initiation network for operation 2. Next the initiation network for the signal input to the wait operation s
determined and it consists of the completion signal from operation 2, The remaining initiation networks are
synthesized in a similar manner and arc shown in Figurc 58. Figure 59 shows the combination of all of these
initiation networks with branch operations added where the output from an operation is required by more than one
following operation.

If the time required for operations 4 and 5 is longer than that required for operations 2 and 3 the system will
opcrate satisfactorily. However, if operations 4 und 5 require less time than operations 2 and 3, there may be several
signals applicd to input C of the wait operation beforc a signal is applied to input A,

The problem occurs because input C of the wait operation may rcceive a signal from the second cycle of the
process before input A receives g signal from the first cycle. The error would he climinated if the wait operation
could store each input signal to B and C until the corresponding signal was reccived by input A. However, sincc the
number of cycles to be executed and the relative speeds of the operations are not known, the number of input
signals that the wait operation would be required to store may be arbitrarily large,

The error can also be eliminated by making operation 5 depend on the completion signal from the wait operation
that corresponds to input C as shown in Figure 60. In this case only one signal can be received by the wait operation
at input C before a signal is received at input A, and the wait operation completion signal generated.

Other types of errors can also occur as Figure 61 shows. If the exccution of operation 2 is slow enough, the right
input to the rendezvous at the input to operation 3 will receive two input signals before the left input of the
rendezvous receives any signals. In this case the input signal to the rendezvous for a given cycle ean be generated
before the completion signal has been generated for the preceding cycle and a hazard exists. There are several
changes that can be made to climinate the error, one of which is shown in Figure 62. The error is eliminated by
insuring that the rendezvous input signal for any cycle depends on the rendezvous completion signal from the
preceding cycle,

In the following section a proof is presented to show that if each signal is self-dependent (the initiation of the
signal on any cycle depends on the completion of the signal from all preceding cycles) the process that is synthesized

will be free of implementation errors.

F)

YR

B0l

INITIATION NETWORK
FOR OPLERATION 2

g%

4

Q

INITIATION NETWORK
FOR OPERATION 4

-85
' l
| I
] |
3 2
[}
I
3
|
!
]
INITIATION NETWORK
W FOR OPERATION 3

INITIATION NETWORK
FOR THE WAIT OPERATION

6

INITIATION NETWORK
FOR OPERATION o

INITIATION NETWORK
FOR OPERATION 5

FIGURE 58. TIHE INITIATION NETWORKS FOR THE
EXAMPLE OF FIGURE 57

-86-

LRRUE

FIGURE 59. COMPLETE CONCURRENT FLOW CHART FOR THE
EXAMPLE OF FIGURE 57

87.

PRECEDENCE GRAPH

Fi

FLOW CHART

FIGURE 60. THE PROCESS OF FIGURE 59 WITH OPERATION S DEPENDING
ON THE COMPLETION OF THE WAIT OPERATION

P

88-

]

SEQUENCE
GRAPII

PRECEDENCE ,e.

GRAPH

0

CONTROL FLOW CHART

FIGURE 61. A CONCURRENT PROCESS WITHt A HAZARD

(4
Qe
—tnl /

wany S BN

Ve i

FIGURE

62.

.89.

1

THE PROCESS OF

FIGURE

ol

WiTH

THE ERROR CORRECTED

90-

4.7.1 Self-Dependent Signals

In this section we will show that the requirement for all signals to be self-dependent (the initiation of each signal

depends on the completion of that signal from all preceding cycles) in conjunction with the previous 1equircments

that an operation must dominate all of its direct predecessors and that cut sets are used to determine combinations

of signals that are merged together, is necessary and sufficient to guarantee a corcurrent process that is fice of

implementation errors. The specific types of implementation errors considered arc the incomplete rendezvous and

hazard as discuss2d in Chapter 3.

Theorem 6:

Proof:

The requirement that all signals of a process be self-dependent is both a necessary
condition, and in conjunction with the requirements on synthesis of M R networks, a
sufficient condition for a synthesized concurrent process to be free of implementation
errors.

To show the necessary part consider any operation, X, that is not self-dependent, X
cannot depend on the completion signal of operation X from every preceding cycle or it
would be self-dependent. Then operation X may receive an initiation signal before it
generates a completion signal for some preceding cycle and this represents a hazard. Thus,
if any operation in a process is not self-dependent, a hazard exists in the process.

To shiow that the requirement is sufficient, consider any process in which no operation
can receive an input signai for a particular cycle until its execution is compleicd for all
preceding cycles. That is, on every cycle except the first, an operation cannot be initiated
until it has been completed on all preceding cycles, or if it is not executed on a preceding
cycle, until everything that its execution in the preceding cycles would depend on, has
Leen completed. Figure 63 shows a typical operation, 1, and the control network used to
generate the initiation signal for 1. The inputs to the merge operations may come from
operations in the same cycle of the process as | or from operations in preceding cycles but
all of the operations must be dominated by I.

Each input to one of the merge operation: Jdepends on the completion of the merge
operation on all precedirg executions of that merge operation. Since the only place the
completion of the merge operation can be tested is the output of operation 1, operation |
must be completed or else not executed on every preceding cycle before any input signal
for the merge operation can be generated for the current cycle.

Consider the first execution of operation I. Each merge operation in the M—R network
will receive exactly one input corresponding to that execution of I since exactly onc
member of each of I's cut sets must be executed fo- each execution of operation 1. The
merge operations cannot receive any additional signols until operation 1 is completed and
therefore are free of huzard errors for the first execution of operation I. The rendezvous

will receive one initiation signal on each of its inputs and cannot receive any further

wd

FIGURE 63.

9].

A TYPICAL OPERATION AND ITS M R

NETWORK

92,

initiation signals until its execution is complete and the execution of operation | is
complete. Therefore the rendezvous is free of incomplete rendezvous and hazard errors.
Operation | is also free of hazards since it cannot receive a second initiation signal until its
exccution is completed. Thus operation | and its M- R network must be free of
implementation errors the first time that they are exccuted.

Next, consider the execution of operation | on cycle M when all preceding exccutions
have been error-free. Before any merge operation can receive an input signal
corresponding to the execution of 1 on cycle M, the execution of | must be completed on
all preceding cycles, and since these preceding exeeutions are crror-free no merge
operations or rendezvous inputs can be active. As before, each merge operution must
receive one input signal and cun receive no additional signals until operation | is
completed so the M- R network will be free of hazard and incomplete rendezvous errors.
Thus there will be no hazard or incomplete rendezvous errors for operation land its M R
network on the first execution of I or any execution of | that follows an crror-free
exccution of I. The sume proof cun be cxtended slightly to account for the additional
inputs and used to show that there are no hazard or incomplete rendezvous errors in uny
wait operation or its M—R network.

Next, consider a rendezvous operation that is used to combine two or more sigaals from
direct predecessors of operation | that have the same dominance relation. If either of the
direct predecessors is executed the other one must be executed also and ncither can be
executed twice before the completion signal from the rendezvous is generated since both
of the direct predecessors must depend on the completion of operation | which depends
on the rendezvous completion. Thus there can be no incomplete rendezvous or hazard
errors in the rendezvous operation.

The only other operations it the system are branch operations but there can be no hazard
in 4 branch operation unless there is also a hazard in the operation from which the branch
operation receives its input, Thus there can be no hazard or incomplete rendezvous errors

in the synthesized process if all operations are self-dependent.
4.7.2 Synthesis of Processes with Self-Dependent Signals
The preceding section has shown that all signals must be self-dependent if the synthesized process is to be
error-frec. Next, methods must be established to insure that all signals in any synthesized process are self-dependent.
The following sections present several methods which were investigated to assure that the control network
synthesized from a precedence and connectivity relation would contain only self-dependent signals.

4.7.2.1 Reciprocal Precedence Relations

By u reciprocal precedence relation it is meant that it an operation, J, is a predecessor of an operation, I, then |

must be a predecessor of J whenever I follows 1. Figure 64 shows examples of poitions of several precedence graphs,

£

—

FIGURE 64,

-03.

FORMATION OF THE RECIPROCAL PRECEDENCE RELATION

94.

the added members of the precedence relation used to make the precedence relation reciprocat, and the Tinal
precedence refation with alt implied members deleted. The requirement that the precedence relation be reciprocat is
sufficient to insure that each input signat to an operation depends on the completion ol that operation for afl
preceding initiations. Unfortunately, the reciprocal precedence relation also causes the execution of all operations
within a loop to be completely sequential as is shown below.

Every operation in a loop must have the loop exit decision Irom the previous execution ol the loop as a
predecessor. Then if the precedence relation is to be reciprocat the loop exit decision must have every operation in
the toop as a predecessor. Then each operation in one execution ol the toop has every operation in o preceding
execution of the loop as a predecessor. Then each operation has every operation in its cycle of the loop that

precedes it as a predecessor also, and the operations must be executed sequentiatly.
4.7.2.2 Reciprocal Basic Precedence Relations

The requirement that all precedence relations be symmetric, as discussed in tire fast section, is snlTicient to
provide an error-free network but also eliminates concurrent operation within loops. Less restrictive requirements
are needed that will still assure an error-free network, One possibility, which will be investigated in this section, is to
require only the basic precedence relation to be reciprocal. That is, if an operation, J, is a direct predecessor of an
operation, I, then there must be a member of the precedence relation (not necessarily the basic precedence relation)
between | and J whenever | follows J. Since every operation that provides a signal for the M R network ol an
operation, I, is a direct predecessor of I, this will require all preceding executions of [to be completed hefore any of
I's direct predecessors can be executed. Thus, all signals will be seif-dependent and the synthesized process will be
free of implementation errors. The required members of the precedence relation can always be added il there is a
path from I to J that contains fewer than two feedback aics. If there is no path containing fewer than two feedback
arcs then the precedence relation as developed in Section 4.3 will require | to be executed before J.

Following is u summary of the steps used to synthesize processes with type C coneurrency.

1. Determine the dominance relation as described in Section 4.2.

(5]

Determine the precedence relation for two copies of the system as described in Section 4.3,

3. Select an operation, 1, other than the PI operation, cach of whose direct predecessors has either had its
M-R network synthesized, is in the preceding copy of the process, or is the Pl node.

4. If any direct predecessor, K, of | is not subordinate to I, find the closest decision to K that can be reached
by K, that reaches t, and that has an output that is dominated by I. Add a wait operation that receives its
decision inputs from the decision and make K a predecessor of the wait operation and the wait operation a
predecessor of operation I. Update the direct precedence relation as described in Section 3.3.4, including
any relations required to make the basic precedence relation reciprocal and return to step 3.

5. If any direct predecessors of [have the same dominance refation, connect their outputs to the inputs ~f
rendezvous operation and use the rendezvous output in place of the operation outputs.

6. Determine the cut sets for | and use a cut set table to choose a group ol cut sets that cover all of the

predecessors of | and synthesize the correspondir - M- R network.

7. If operation I is not the PT operation, return to siep 3.

——

was wan S s

4.7.2.3 Example

As an example of the application of this method counsider the scquential flow chart shown in Figure 6S5.
Operations 2, 3, and 4 refer to storage locations A to D and operation S decrements a count and tests it to determine
whether the loop should be repeated or not. Figure 66 shows the basic precedence rclation for two copies of the
process. All of the members of the precedence rclation are determined as described in Section 4.2 except the one
from operation 2 to operation 5 which is included to make the basic precedence relation reciprocal. Since operation
2 does not dominate operation 3'a wait operation must be added and it will receive its decision inputs from
operation 5. The wait operation v:ill have two outcomes and the updated precedence relation is shown in Figure 66
where the node representing the wait operation is drawn to emphasize the two outcomes. Another wait operation
must be added since operation 3 does not dominate opcration 4 "and the completc precedence relation is shown in
Figure 66. The flow chart of the synthesized concurrent process is shown in Figure 67 and it shows that opcration 2
of a given cycle may bc initiated before operation 4 of the preceding cycle has becen completed. The flow chart can
be simplified slightly and some of the merge, branch, and rendezvous operations climinated by observing that some
signals are required us inputs to sevcral operations. For example, the left output from W2 could be merged with the
output signal from operation I and then branched to provide signals for the rendezvous associated with operations 3
and 5, thereby saving one merge and one branch operation.

The concurrent process in Figure 67 includes several unnccessary restrictions. For cxample, operation § of a given
cycle must follow operation 2 of the same cycle duc to the member of the precedence relation that was added to
make the precedence relation reciprocal. 1t is obviously not necessary that operation 5 follow operation 2 of the
same cycle. In order to allow the synthesis of a process in which opcrations 2 and S can be cxecuted concurrently a
dummy operation, X, can be added directly before operation 2. X is made a predecessor of opcration 2 and every
operation that was originally a predecessor of operation 2 is made a predecessor of operation X. The basic
precedence relation is shown in Figure 68 with the added member requircd to make it reciprocal. Note that with the
addition of operation X, operations 2 and § can be executed concurrently.

Another place where the members added to the precedence rclation to make it reciprocal reduce the possibilitics
of concurrent operation is shown in Figure 66. The members of the prccedence rclation from W1’ and W2 ' to
operation 5 prevent operation 5 from being exccuted until operations 3 and 4 of the preceding cyclc are completed.
Actually, there is nothing in the original proccss that restricts operation S from being executed any number of times
beforc operations 2, 3, and 4 are completed the first time. In order to allow operation § to bc executed before
opcration 3 of the preceding cycle is complcted a pair of wait opcrations can be used in place of W1 as is shown in
Figure 69. Two wait opcrations, WIA and WIiB, are added to the precedence relation as shown in Figure 69 to
generate a signal that depends on the complction of operation 3 from the preceding cycle and that 1s subordinate to
operation 2. The direct precedence relation can then be made reciprocal without rcquiring operation 5 to depend on
the completion of operation 3 from the preceding cycle. By replacing W2 with a pair of wait operations in the samc
manncr the dependence of opcration 5 on operation 4 of the preceding cycle can also be eliminated. The exccution
of operation 5 on cycle N will then depe 1d on the completion of opcrations 3 and 4 on cycle N--2.

By using enough wait operations operation 5 may be allowed to proceed any number of cycles ahead of
operations 3 and 4 but the number of wait operations and complexity of the synthesized process [increase
significantly. The wait operations allow the exccution of operation 5 to proceed ahead of the othcr operations by

storing the outcome of the decision. This is an inefficient method of storing this information and a system of

906-

|

——l M

Be— f(A)

|

C «— g(B) 3

1

De— ()

"1

FIGURE 65. A SEQUENTIAL FLOW CHART WITH ONE LOOP

97.

F O OO
8

PRECEDENCE °

GRAPH
PRECEDENCE GRAPH WITH
W1 ADDED PRECEDENCE GRAPH WITH

Wi AND W2 ADDED

FIGURE 66. PRECEDENCE GRAPHS FOR THE FLOW CHART OF

FIGURE 65

98-

FIGURE 67. A CONCURRENT FLOW CHART FOR THE
EXAMPLE OF FIGURE 65

FIGURE

68.

99.

PRECEDENCE GRAPH FOR THE EXAMPLE OF

FIGURE 65 WITH DUMMY OPERATION X ADDED

-100-

Win

A PORTION OF THE FLOW CHART

PRECEDENCE GRAPH

FIGURE 69. AN EXAMPLE OF THE USE OF A PAIR OF WAIT OPERATIONS TO

ALLOW ADDITIONAL CONCURRENCY

<4 =R .l o=

-101-

counters or data queues as discussed by Kaip and Miller and by Rerter?®: 2! would be wore efficient. However, they

have discussed only methods for analysis of their systems and not for synthesis.
4.8 SUMMARY

Three methods have been presented fon synthesizing concurrent processes Irom sequential processes containing
loops. The Tirst method, whicl, consists of tr cating the execution of cach cycle of the process independently, is the
casiest to apply but does not allow any cycle-to-eycle concurrency. The second method allows some cycle-to-cyele
concurrency while the third method, which consists ol Torming a reciprocal precedence elation is the most complex
but may produce a Taster system since additional cycle-to-cycle concurrency is possible. Which ol the three methods
is best for a given process will depend on the particular characteristics ol the process including the exeeution tines

ol the individual operations.

-102-

5. CONCLUSION

Methods have been developed which can be used o analyze a sequential process and to then synthesize an
error-free process that performs the same catculations but i fess time by performing some operitions concurrently.
Precedences relations, as developed by Bernstein2® and Fisher® are reviewed in Sections 2.4 and 4.3 und are used 1o
describe any required order of execution of the operations comprising the process. The dominance relation of
Prosser®® is extended to include processes with loops and is used to represent the relution between the execution of
operations, Wait operations are added (o the original process until every direct predecessor of an operation is
subordmate to the operation and an M- R network is then used to attow initiation of the operation as soon as all of
the operation’s predecessors ure completed. The precedence relation is used to prevent sequencing errors by insuring
that any required order of execution is observed while the dominauce relation and directed cut sets are used to
prevent implementation errors, The M- R networks synthesized are analogous, although not isomorphic, to or-and
switching networks and some of the techniques developed for synthesis of multilevel i multioutput or-and
switching networks might be applied to simplify the M R uetworks. Several methods were developed, varying in
complexity and effectiveness, for treating processes with loops.

The synthesis methods described are by no means exhaustive and otlier possibilities exist which may altow
simpler processes to be synthesized by reducing the possibilities for concurrent operation. For example, in some
cases o number of wait operations may be required which significantly complicate a4 concurrent process while
alfowing a very small or perhaps no reduction in the execution time of the process. If an operation, 1, has an
operation, J, as u direct predecessor but | does not dominate J the use of wait operations can be avoided by
modifying the synthesis procedure slightly. Instead of adding a wait operation, operation J cin be made a
predecessor of the decisior: trom which the wait operation would have received its decision inputs. Operation 1 will
have the decision as a predecessor and the decision output will be dominated by 1. This will eliminate the
requirement for the wait operation and will prevent operation J from being executed coneurrently with the decision
or with any operation that has the decision us u predecessor. Thus the synthesized process will be simpler and will
allow less concurrent execution of the operations,

The only other effort to synthesize concurrent processes known to the author is that of Biugham er. qf 5" 52
Their methiod consists of maintaining the precedence matrix and several binary vectors in memory and using these to
control the sequencing of the operations. Each time an operation is completed its corresponding bit is set in a vector
specifying all completed operations. The precedence graph is then checked 1o find alt operations whose predecessors
have been completed and these are added 10 a vector representing operations ready for execution. Whenever
decision is exccuted all operations that cannot be reached by the sclected outcome are marked as having been
completed so that their-successors may be initiated. Although it can probably be modified (o include processes with
loops, the method as presented does not include processes with loops. Some method would be reqnired to
reinitialize or else to provide additional copies of the status vectors wlrerr a toop is repeated. The use of status vectors
and the precedence matrix during the process execution does not seem practical in a hardware process such us might
be constructed from macromodules but it could be implemented in a programmed system.

Additional work is required to allow effective use of concurrent operations. A difficult but necessary requirement
is the ability to determine where concurrent execution of operations is worth the added complexity and where it is

not. This obviously requires estimates of the execution time of the individual operations and also requires knowledge

of the number of times that each operation is to be execnted if the times to execute sections ol the process are to be
estimated. This problem has been studied by Estrin and Martin®? and by Kral®# but is extremely difTicult to analyze
since branching probabilities may be data dependent. Another problem is the assignment of operations to the
hardware or processors that will be used to execute them. As the example in Figure 10 shows, the use of additional

storage locations or reassignment of storage locations may alfect the degree of concurrent execution possible.

9

N

0.

10.

-104-

6. BIBLIOURAPHY

Winograd, S.. “On the Time Required to Perform Addition”, Journal of the Association for Computing
Machinery, Vol. 12,No. 2, (277- 285). April 1965.

Winograd, S.. “On the Time Required to Perform Multiplication™, Journal of the Association for
Computing Machinerr, Vol. 14, No. 4, (793 -802), October 1967.

Winograd. S., “How Fast Can Computers Add™, Scientific American, Vol. 219, No. 4, (93- -100), October
1968.

Conway, M.E.. “A Multiprocessor System Design™, Proceedings of the Fall Joint Computer Conference,
(139 146), 1963,

Anderson, J.P., “Program Structures for Parallel Processing”, Communications of the Association for
Computing Machinery, Vol. 8, No. 12, (780—788), December 1965,

Dennis. J.B., and Van Hom. E.C.. “Programming Semantics for Multiprogramnied Computations”,

Communications of the Association Jor Computing Machinery, Vol. 9, No. 3, (143--155), March 1966.

Gosden. J.A., “Explicit Parallel Processing Description and Coatrol in Programs for Multi and Uni-Processor
Computers™, Proceedings of the Fall Joint Coniputer Conference, (651 —660), 1966.

Opler. A., “Procedure-Oriented Language Statements to Facilitate Parallel Processing”, Commurications
of the Association for Compu:ting Machinery, Vol. 8,No. 5,(306--307), May 1965.

Fisher, D.A.. Progran Analysis for Multiprocessing, TR 67 -2, Burroughs Corporation, Great Vulley,
Pennsylvania, May 1967,

Clark, W.A.. “Macromodular Computer Systems”, Spring Joint Computer Conference, (335 - 336), 1967.

Ornstein, SM.. Stucki, M.J., and Clark, W.A., “A Functi 1] Deseription of Macromodules",Springl()int
Computer Conference, (337 355), 1967.

Stucki, M.J., Ornstein, SM.. and Clark, W.A., “Logical Design of Macromodules”, Spring Joint Computer
Conference, (357 364), 1967,

Blum, A., Chaney, T.J., and Olsen, R.E., “Engineering Desion of Macromodules”, Spring Joint Computer
Conference, (365 370), 1967,

- - —

19.

21.

23.

24.

25.

-105-

Wann, D.F., Error Analysis in Parallel Processing, Computer Systems Laboratory, Washington University,

St. Louis, Missouri, Technical Memorandum No. 15, December 1966.

Turn, R., Assignment of nwentory of a Variable Structwe Computer, Department of Engineering,

University of California, Los Angeles, Technical Report No. 635, January 1963.

Estrin, G., and Turu, R., “Automatic Assignment of Computations in a Variable Structure Computer
System”, Institute of Electrical and Electrcnic Engineers Transactions on Electronic Computers, Vol.
EC--12, No. 6,(755-773), December 1963.

Martin, D.F., The Automatic Assignment and Sequencing of Computations on Parallel Processor Systems,

Department of Engineering, University of California, Los Angeles, Report 664, January 1966.

Martin, D.F., and Estrin, G., “Experiments on Models of Computations and Systems”, Institute of
Electrical and Electronic Engineers Transactions on Electronic Computers, Vol. EC—16, No. |, (59-69),
February 1967.

Schwartz, E.S., “A Heuristic Procedure for Parallel Sequencing with Choice of Machines”, Management
Science, Vol. 10, No. 4, July 1964.

Karp, R.M., and Miller, R.E., “Properties of a Model for Parallel Computations: Determinacy, Terminaiion,
Queing”, SIAM Journal of Applied Math., Vol. 14, No. 6, (1390--1411), November 1966’

Reiter, R., “Scheduling Parallel Computations”, Journal of the Association for Computing Machinery, Vol.
15, No. 4, (590-599), October 1968.

Wann, D.F., Ellis, R.A., Stucki, M.J., and Keller, R.M., “Problems Encountered with Control Networks in
Highly Restructurable Digital Systemns™, Digest of the Institutc of Electrical and Electronic Engineers
Computer Conference, (29--32), September 6--8, 1967.

Keller, R.M., and Wann, D.F., Analysis of 'mplementation Errors in Digital Computing Systems, Computer
Systemrs Laboratory, Washington University, St. Louis, Technical Report No. 6, March 1967.

Van Hom, E.C., Computer Design for Asynchronously Reproducible Multiprocessing, AD 650 407,
September 1966.

Van Horn, EC., “Three Criteria for Designing Computing Systems fto Facilitate Debugging™,
Communications of the Association for Computing Machinery, Vol. 11, No. 5.(360 365). May 1968.

20.

31.

33.

34.

35.

36.

37.

38.

39.

-106-

Bernstein. AJ., “Analysis of Programs for Parallel Processing™, Institute of Electrical and Electronic

Enginecrs Transactions on Electronic Computers, Vol. EC-15, No. S, (757-763), October 1966.

Thorelli, L., **An Algorithm for Computing all Paths in a Graph™, BIT Vol. 6. No. 4, (347 -349), 1966.
Mann, W.C., 4 Data Structure for Directed Graphs in Man-Machine Processing, AD 636 251, June 20, 1966.
Jenson, P.A., A Graph Decomposition Technigue for Strueturing Data, AD 658 756, September 1967.

Prosser, R.T., “Applications of Boolean Matrices to the Analysis of Flow Diagrams™, Proceedings of the

Eastern Joint Computer Conference, (133—138), 1959,

Warshall, S., **A Theorem on Boolean Matrices”. Journal of the Association for Computing Machinery, Vol.
9,No. I, (11-12), January 1962,

Fisher, A.C., Liebman, J.S., and Nemhauser, G.L., “Computer Construction of Project Networks”,

Comnmnications of the Association for Computing Machinery, Vol. 11, No. 7, (493-497), July 1968.

Chen, Y.C., and Wing, O., “Some Properties of Cycle-Free Directed Graphs and Identification of the
Longest Path™, Jourual of the Franklin Institute, Vol. 28] ,No. 4,(293-301), April 19606.

Ramamoorthy, C.V., “Analysis of Graphs by Connectivity Considerations”, Journal of the Association for
Computing Machinery, Vol. 13, No. 2, (211-222). April 1966,

Ramamoorthy, C.V., “A Structural Theory of Machine Diagnosis”, Spring Joint Computer Conference,
(743-756), 1967.

Bingham, H., Fisher, D., and Semon, W., Detection of Implicit Comptational Parallelism for Input Output
Sets, AD 645 120, December 1966.

Bingham, H., Fisher, D., and Semon, W., Detection of Essential Ordering Implicit in Compiler Language
Programs, AD 650 845, February 1967.

Nievergelt, J., “On the Automatic Simplification of Computer Prograns”, Communications of the
Association for Computing Machinery, Vol. 8, No. 6, (366-370), June 1965.

Dijkstra, EW., “The Structure of the ‘THE’ - Multiprogramming System”, Communications of the
Association for Computing Machinery, Vol. 11, No. 5, (341-346), May 1968.

40.

41].

43.

44.

45.

40.

47.

48.

49.

50.

Sl

52.

-107-

Dorn, W.S., “Generalization of Horner’s Rule for Polynomial Evaluation”, IBM Journal of Research and
Development, Vol. 6, No. 2, (239-245\, April 1962,

Nievergelt, J., “Parallel Methods for Integrating Ordinary Differentiul Equations®, Conununications of the

Association for Computing Maclinery, Vol. 7, No. 12, (731 -733), December 1904,

Shedler, G.S., “Parallel Numerical Methods for the Solution of Equations™, Commumications of the
Association for Computing Macliinery, Vol. 10, No. 5.(286 291), May 1967.

Karp, RM., Miller, R.E.. and Winograd, S., “The Organization of Computations for Uniform Reeurrence
Equations”, Journal of the Association Jor Computing Machinery, Vol. 14, No. 3, (563 590), July 1907.

Shedler, G.S., and Lehman, MM., “Evaluation of Redundancy in a Parallel Algorithm™ . IBM Systems
Journal, Vol. 6, No, 3, (142--149), 1967,

Gilmore, P.A., “Structuring of Parallel Algorithms™, Journat of the Association for Computing Machinery,
Vol. 15, No. 2, (176 -192), 1968.

Pease, M.C., “An Adaptation of the Fast Fourier Transform for Parallel Processing™, Jowrnal of the

Association for Computing Machinery, Vol. 15, No. 2,(252- 264), 1968.
McCluskey., EJ., ntroduction to the Theory of Switching Circnits, McGraw-1ill, 1965,

Gimpel, J.F., “A Reduction Technique for Prime Implicant Tables”, Institure of Elcetrical ond Flectronie

Engineers Transactions on Electronic Computers, Vol. EC-14,No. 4, (535 54|). August 1965.
Miller, R.E., Switching Theory, Vol. 1, Jolm Wiley and Sons, New York , 1965.

Marimont, R.B., “Applications of Graphs and Boolean Matrices to Computer Prograiaming”, S/4M Reriew,
Vol. 2, No. 4, (259 268), October 1960,

Bingham, HW., Reigal, EW., and Fisher, D.A., Parallelism in Computer Programs and Multiprocessing
Organizations, AD 827 655, January 1968,

Bingham, HW., Reigal, EW., and F isher, D.A., Parallclism in Computer Programs and in Machines, AD 667
907, April 1968,

53.

54.

-108-

Martin, DF., and Estrin, G., “Models of Computational Systems — Cyclic to Acyclic Graph
Transformations”, Institute of Electricu! and Electronics Engineers Transactions on Electronic Comiputers,
Vol. EC-16, No. 1, (70—79), February 1967.

Kral, J., “One Way of Estimatin:; Frequencies of Jumps in a Program”, Communications of the Association
for Computing Machinery, Vol. 11,No. 7, (475—480), July 1968.

